9. Состав и назначение основных элементов компьютера

9. Состав и назначение основных элементов компьютера Компьютер

Состав и назначение основных элементов компьютера

Компьютер — это многофункциональное электронное устройство, предназначенное для накопления, обработки и передач» информации. Под архитектурой персонального компьютера понимается его логическая организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом:

·Принцип программного управления — программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

·Принцип однородности памяти — программы и иные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными!

·Принцип адресности — основная память структурно состоит из пронумерованных ячеек.

Компьютеры, построенные на этих принципах, имеют классическую архитектуру.

Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера, к которым относятся: центральный процессор; основная память; внешняя память; периферийные устройства.

Конструктивно персональные компьютеры выполнены в виде центрального системного блока, к которому через специальные разъемы присоединяются другие устройства. В состав системного блока входят все основные узлы компьютера: системная плата; блок питания; накопитель на жестком магнитном диске; накопитель на оптическом диске; разъемы для дополнительных устройств.

На системной (материнской) плате в свою очередь размещаются: микропроцессор; математический сопроцессор; генератор тактовых импульсов; микросхемы памяти; контроллеры внешних устройств; звуковая и видеокарты и другие устройства.

Основными функциональными характеристиками персонального компьютера являются:

·производительность, быстродействие, тактовая частота;

·разрядность микропроцессора и кодовых шин интерфейса.;

·типы системного и локальных интерфейсов;

·емкость оперативной памяти;

·емкость накопителя на жестких магнитных дисках;

·наличие и тип накопителя на оптических дисках;

·наличие и тип модема;

·наличие и виды мультимедийных средств;

·имеющееся программное обеспечение и вид операционной системы;

·аппаратная и программная совместимость с другими типами ЭВМ;

·возможность работы в вычислительной сети;

·надежность;

·стоимость;

·габариты и вес.

Центральный процессор

Центральный процессор (ЦП) — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

9. Состав и назначение основных элементов компьютера9. Состав и назначение основных элементов компьютера9. Состав и назначение основных элементов компьютера

Рисунок 16 — ПроцессорIntelCorei7

ЦП выполняет следующие основные функции:

·чтение и дешифрацию команд из основной памяти;

·чтение данных из основной памяти и регистров адаптеров внешних устройств;

·прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

·обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

·выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство — предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления — координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

·формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

·формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

·получает от генератора тактовых импульсов обратную последовательность импульсов.

3. Микропроцессорная память — предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Регистр представляет собой цифровую электронную схему, служащую для временного хранения двоичных чисел. В процессоре имеется значительное количество регистров, большая часть которых используется самим процессором и недоступна программисту. Например, при выборке из памяти очередной команды она помещается в регистр команд. Программист обратиться к этому регистру не может. Имеются также регистры, которые в принципе программно доступны, но обращение к ним осуществляется из программ операционной системы (например, управляющие регистры и теневые регистры дескрипторов сегментов). Этими регистрами пользуются в основном разработчики операционных систем.

Доступ к значениям, хранящимся в регистрах, как правило, в несколько раз быстрее, чем доступ к ячейкам оперативной памяти (даже если кеш-память содержит нужные данные), но объём оперативной памяти намного превосходит суммарный объём регистров (объём среднего модуля оперативной памяти сегодня составляет 1-4 Гб, суммарная «ёмкость» регистров общего назначения/данных для процессора Intel 80×86 16 битов * 4 = 64 бита (8 байт)).

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя: внутренний интерфейс микропроцессора; буферные запоминающие регистры; схемы управления портами ввода-вывода и системной шиной.

Основные характеристики процессора:

1.Тактовая частота. Измеряется в гигагерцах (ГГц) и указывает на количество выполняемых процессором операций за секунду.

2.Кэш процессора — встроенная в процессор оперативная память.  Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров — до 3. Кэш-память уровня N 1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N.

3.Разрядность процессора — это число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство.

4. Сокет — разъем на материнской плате, который предназначено для подключения ЦП. Для процессоров Intel требуется сокеты, которые маркируются следующим образом: LGA, а далее идет трех- или четырехзначное число (775, 1366 или 1156). С процессорами от AMD ситуация другая — здесь используется маркировка «Socket AM2», «Socket AM2 » или «Socket AM3». Отличие Intel’овских сокетов от AMD в том, что первые для крепления процессора используют контактные ножки, а вторые — контактные отверстия.

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

1.Процессор выставляет число, хранящееся в регистресчётчика команд, на шину адреса и отдаёт памяти команду чтения;

2.Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;

3.Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;

4.Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;

5.Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

Микропроцессоры можно разделить на группы:

·микропроцессоры типа CISC с полным набором системы команд;

·микропроцессоры типа RISC с усеченным набором системы команд;

·микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

CISC (англ. Complex Instruction Set Computing) — концепция проектирования процессоров, которая характеризуется следующим набором свойств:

·нефиксированным значением длины команды.

·арифметические действия кодируются в одной инструкции.

·небольшим числом регистров, каждый из которых выполняет строго определённую функцию.

Типичными представителями являются процессоры на основе x86 команд (исключая современные IntelPentium 4, Pentium D, Core, AMDAthlon, Phenom, которые являются гибридными.

Наиболее распространённая архитектура современных настольных, серверных и мобильных процессоров построена по архитектуре Intel x86 (или х86-64 в случае 64-разрядных процессоров). Формально, все х86-процессоры являлись CISC-процессорами, однако новые процессоры, начиная с Intel486DX, являются CISC-процессорами с RISC-ядром.

RISC (англ. Reduced Instruction Set Computer; неправильно — Reduced Instruction Set Computing) — компьютерссокращённымнаборомкоманд.

Это концепция проектирования процессоров (ЦПУ), которая во главу ставит следующий принцип: более компактные и простые инструкции выполняются быстрее. Простая архитектура позволяет удешевить процессор, поднять тактовую частоту, а также распараллелить исполнение команд между несколькими блоками исполнения (т. н. суперскалярные архитектуры процессоров). Многие ранние RISC-процессоры даже не имели команд умножения и деления. Идея создания RISC процессоров пришла после того, как в 1970-х годах ученые из IBM обнаружили, что многие из функциональных особенностей традиционных ЦПУ игнорировались программистами. Отчасти это был побочный эффект сложности компиляторов. В то время компиляторы могли использовать лишь часть из набора команд процессора. Следующее открытие заключалось в том, что, поскольку некоторые сложные операции использовались редко, они как правило были медленнее, чем те же действия, выполняемые набором простых команд. Это происходило из-за того, что создатели процессоров тратили гораздо меньше времени на улучшение сложных команд, чем на улучшение простых.

Характерные особенности RISC-процессоров:

·фиксированная длина машинных инструкций (например, 32 бита) и простой формат команды.

·специализированные команды для операций с памятью — чтения или записи. Операции вида «прочитать-изменить-записать» отсутствуют. Любые операции «изменить» выполняются только над содержимым регистров (т. н. load-and-store архитектура).

·большое количество регистров общего назначения (32 и более).

·отсутствие поддержки операций вида «изменить» над укороченными типами данных — байт, 16-битное слово. Так, например, система команд DEC Alpha содержала только операции над 64-битными словами, и требовала разработки и последующего вызова процедур для выполнения операций над байтами, 16- и 32-битными словами.

·отсутствие микропрограмм внутри самого процессора. То, что в CISC процессоре исполняется микропрограммами, в RISC процессоре исполняется как обыкновенный (хотя и помещенный в специальное хранилище) машинный код, не отличающийся принципиально от кода ядра ОС и приложений.

MISC (англ. Minimal Instruction Set Computer) — процессор, работающий с минимальным набором длинных команд. Увеличение разрядности процессоров привело к идее укладки нескольких команд в одно большое слово. Это позволило использовать возросшую производительность компьютера и его возможность обрабатывать одновременно несколько потоков данных. MISC принцип может лежать в основе микропрограммы выполнения Java и.Net программ, хотя по количеству используемых команд они нарушают принцип MISC

Материнская плата (англ. motherboard) — это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (рисунок 17). Как правило, материнская плата содержит разъёмы (слоты) для подключения различных видов памяти, а также дополнительных контроллеров, для подключения которых обычно используются шины USB, PCI и PCI-Express

9. Состав и назначение основных элементов компьютера

Внешний вид материнский платы

Компьютерная шина (от англ. computer bus) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов(соединений) для физического подключения устройств, карт и кабелей.

9. Состав и назначение основных элементов компьютера

Компоненты материнской платы

Шина адреса — компьютерная шина, используемая центральным процессором или устройствами для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения операции чтения или записи.

Основной характеристикой шины адреса является её ширина в битах. Ширина шины адреса определяет объём адресуемой памяти. Например, если ширина адресной шины составляет 16 бит, и размер слова памяти равен одному байту (минимальный адресуемый объём данных), то объём памяти, который можно адресовать, составляет 216 = 65536 байтов (64 КБ).

Если рассматривать структурную схему микро-ЭВМ, то адресная шина активизирует работу всех внешних устройств по команде, которая поступает с микропроцессора.

Шина данных — в компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения всем устройствам — кому эти данные предназначены.

На материнской платешина может также состоять из множества параллельно идущих через всех потребителей данных проводников (например, в архитектуре IBM PC).

Основной характеристикой шины данных является её ширина в битах. Ширина шины данных определяет количество информации, которое можно передать за один такт.

Основным компонентом материнской платы является чипсет (англ. chipset) центрального процессора — набор микросхем, обеспечивающих подключение ЦПУ к оперативному ПАМЯТИ (ОЗУ) и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух микросхем: «северного» и «южного мостов».

Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер — обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер.

Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport и SCI.

Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7), что упрощает функции системного контроллера и снижает тепловыделение.

В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. Ранее использовались общие шины (ISA, VLB, PCI) и шина AGP.

Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI-Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC — используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) — микросхемы, беспечивающей поддержку «устаревших» низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши).

Как правило, северный и южный мосты реализуются в виде отдельных микросхем, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней.

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для персонального компьютера, места ее крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, сокета центрального процессора (если он есть) и слотов для оперативной памяти, а также тип разъема для подключения блока питания.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей.

Устаревшие: Baby-AT; Mini-ATX; полноразмерная плата AT; LPX.

Современные: АТХ; microATX; Flex-АТХ; NLX; WTX, CEB.

Внедряемые: Mini-ITX и Nano-ITX; Pico-ITX; BTX, MicroBTX и PicoBTX.

Оцените статью
OverComp.ru