Что такое ОЗУ в компьютере — для чего нужно и на что влияет обзор лучших моделей

Внешняя память

Назначение внешней памяти компьютера заключается в долговременном хранении информации любого вида. Выключение питания компьютера не приводит к очистке внешней памяти. Объем этой памяти в тысячи раз больше объема внутренней памяти. Кроме того, в случае необходимости ее можно «нарастить» так же, как можно купить дополнительную книжную полку для хранения новых книг.

Но обращение к внешней памяти требует гораздо большего времени. Как человек затрачивает на поиск информации в справочной литературе гораздо больше времени, чем на ее поиск в собственной памяти, так и скорость обращения (доступа) к внешней памяти существенно больше, чем к оперативной.

Необходимо различать понятия носителя информации и устройства внешней памяти.

imageНоситель — материальный объект, способный хранить информацию.imageУстройство внешней памяти (накопитель)—физическое приспособление, позволяющее производить считывание и запись информации на соответствующий носитель.

Носителями информации во внешней памяти современных компьютеров являются магнитные или оптические диски, магнитные ленты и некоторые другие.

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа.

В устройствах прямого (произвольного) доступа время обращения к информации не зависит от места ее расположения на носителе. В устройствах последовательного доступа такая зависимость существует.

Рассмотрим знакомые всем примеры. Время доступа к песне на аудиокассете зависит от местоположения записи. Для ее прослушивания необходимо предварительно перемотать кассету до того места, где записана песня. Это пример последовательного доступа к информации.

Время же доступа к песне на грампластинке не зависит от того, первая эта песня на диске или последняя. Чтобы прослушать любимое произведение, достаточно установить звукосниматель проигрывателя в определенное место на диске, где записана песня, или на музыкальном центре указать ее номер. Это пример прямого доступа к информации.

Дополнительно к введенным ранее общим характеристикам памяти для внешней памяти используют понятия плотности записи и скорости обмена информацией.

Плотность записи определяется объемом информации, записанным на единице длины дорожки. Единицей измерения плотности записи служат биты на миллиметр (бит/мм). Плотность записи зависит от плотности нанесения дорожек на поверхность, то есть числа дорожек на поверхности диска.

imageПЛОТНОСТЬ записи — объем информации, записанной на единице длины дорожки.

Скорость обмена информации зависит от скорости ее считывания или записи на носитель, что, в свою очередь, определяется скоростью вращения или перемещения этого носителя в устройстве. По способу записи и чтения устройства внешней памяти (накопители) подразделяются в зависимости от вида носителя на магнитные, оптические и электронные (флэш-память). Рассмотрим основные виды внешних носителей информации.

Внутренняя память

Характерными особенностями внутренней памяти по сравнению с внешней являются высокое быстродействие и ограниченный объем. Физически внутренняя память компьютера представляет собой интегральные микросхемы (чипы), которые размещаются в специальных подставках (гнездах) на плате. Чем больше размер внутренней памяти, тем более сложную задачу и с большей скоростью может решить компьютер.

Постоянная память хранит очень важную для нормальной работы компьютера информацию. В частности, в ней содержатся программы, необходимые для проверки основных устройств компьютера, а также для загрузки операционной системы. Очевидно, что изменять эти программы нельзя, так как при любом вмешательстве сразу станет невозможным последующее использование компьютера.

Вся записанная в постоянную память информация сохраняется и после выключения компьютера, так как микросхемы являются энергонезависимыми. Запись информации в постоянную память происходит обычно только один раз — при производстве соответствующих чипов фирмой-изготовителем.

imageПостоянная память — устройство для долговременного хранения программ и данных.

Существует две основные разновидности микросхем постоянной памяти: однократно программируемые (после записи содержимое памяти не может быть изменено) и многократно программируемые. Изменение содержимого многократно программируемой памяти производится путем электронного воздействия.

Оперативная память хранит информацию, необходимую для выполнения программ в текущем сеансе работы: исходные данные, команды, промежуточные и конечные результаты. Эта память работает только при включенном электропитании компьютера. После его выключения содержимое оперативной памяти стирается, так как микросхемы являются энергозависимыми устройствами.

imageОперативная память — устройство для хранения программ и данных, которые обрабатываются процессором в текущем сеансе работы.

Устройство оперативной памяти обеспечивает режимы записи, считывания и хранения информации, причем в любой момент времени возможен доступ к любой ячейке памяти. Часто оперативную память называют RAM (англ. Random Access Memory — память с произвольным доступом).

Если необходимо хранить результаты обработки длительное время, то следует воспользоваться каким-нибудь внешним запоминающим устройством.

imageОБРАТИТЕ ВНИМАНИЕ!

При выключении компьютера вся находящаяся в оперативной памяти информация стирается.

Оперативная память характеризуется высоким быстродействием и относительно малой емкостью.

Микросхемы оперативной памяти монтируются на печатной плате. Каждая такая плата снабжена контактами, расположенными вдоль нижнего края, число которых может быть 30, 72 или 168 (рисунок 18.2). Для подключения к другим устройствам компьютера такая плата вставляется своими контактами в специальный разъем (слот) на системной плате, расположенной внутри системного блока.

Рис. 18.2. Микросхемы (чипы) оперативной памяти

Кэш-память (англ. cache — тайник, склад) служит для увеличения производительности компьютера.

Кэш-память используется при обмене данными между микропроцессором и оперативной памятью. Алгоритм ее работы позволяет сократить частоту обращений микропроцессора к оперативной памяти и, следовательно, повысить производительность компьютера.

Существует два типа кэш-памяти: внутренняя (8-512 Кбайт), которая размещается в процессоре, и внешняя (от 256 Кбайт до 1 Мбайт), устанавливаемая на системной плате. 

Гибкие магнитные диски

Одним из наиболее распространенных носителей информации являются гибкие магнитные диски (дискеты) или флоппи-диски (от англ. floppy disk). В настоящее время широко используются гибкие диски с внешним диаметром 3,5″ (дюйма), или 89 мм, называемые обычно 3-дюймовыми.

Поверхность диска покрывается специальным магнитным слоем. Именно этот слой обеспечивает хранение данных, представленных двоичным кодом. Наличие намагниченного участка поверхности кодируется как 1, отсутствие — как 0. Информация записывается с двух сторон диска на дорожках, которые представляют собой концентрические окружности (рисунок 18.3). Каждая дорожка разделяется на секторы. Дорожки и секторы представляют собой намагниченные участки поверхности диска.

Работа с дискетой (запись и чтение) возможна только при наличии на ней магнитной разметки на дорожки и секторы. Процедура предварительной подготовки (разметки) магнитного диска называется форматированием. Для этого в состав системного программного обеспечения включена специальная программа, с помощью которой и производится форматирование диска.

Рис. 18.3. Разметка поверхности гибкого диска

imageФорматирование диска — процесс магнитной разметки диска на дорожки и секторы.

Для работы с гибкими магнитными дисками предназначено устройство, называемое дисководом, или накопителем на гибких магнитных дисках (НГМД). Дисковод для гибких дисков относится к группе накопителей прямого доступа и устанавливается внутри системного блока.

Гибкий диск вставляется в щель дисковода, после чего автоматически открывается шторка и происходит вращение диска вокруг своей оси. При обращении к нему соответствующей программы магнитная головка записи/чтения устанавливается над тем сектором диска, куда надо записать или откуда требуется считать информацию.

Для этого дисковод снабжен двумя шаговыми электродвигателями. Один двигатель обеспечивает вращение диска внутри защитного конверта. Чем выше скорость вращения, тем быстрее считывается информация, а значит, увеличивается скорость обмена информацией. Второй двигатель перемещает головку записи/чтения вдоль радиуса поверхности диска, что и определяет другую характеристику внешней памяти — время доступа к информации.

В защитном конверте имеется специальное окно защиты записи. Это окно может быть открыто или закрыто с помощью бегунка. Для предохранения информации на диске от изменения или удаления это окно открывают. При этом запись на гибкий диск становится невозможна и доступным остается только чтение с диска.

Для обращения к диску, установленному в дисководе, используются специальные имена в виде латинской буквы с двоеточием. Наличие после буквы двоеточия позволяет компьютеру отличить имя дисковода от буквы, поскольку это общее правило. Дисководу для считывания информации с 3-дюймового диска присваивается имя А: или иногда В:.

Запомните правила работы с гибкими дисками.

1. Не дотрагивайтесь до рабочей поверхности диска руками.
2. Не держите диски вблизи источника сильного магнитного поля, например около магнита.
3. Не подвергайте диски нагреванию.
4. Рекомендуется делать копии содержимого гибких дисков на случай их повреждения и выхода из строя.

Существенно увеличить хранимый на магнитном диске объем позволяют технологии, которые при записи дополнительно используют сжатие информации (ZIP-диск).

Жесткие магнитные диски

Одним из обязательных компонентов персонального компьютера являются жесткие магнитные диски. Они представляют собой набор металлических либо керамических дисков (пакет дисков), покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя, обычно называемого винчестером. Накопитель на жестких магнитных дисках (винчестер) относится к накопителям с прямым доступом.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кб (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30″/30″ известного охотничьего ружья «Винчестер».

Основные особенности жестких дисков:

♦ жесткий диск относится к классу носителей с произвольным доступом к информации;
♦ для хранения информации жесткий диск размечается на дорожки и секторы;
♦ для доступа к информации один двигатель дисковода вращает пакет дисков, другой
устанавливает головки в место считывания/запи си информации;
♦ наиболее распространенные размеры жесткого диска — 5,25 и 3,5 дюйма в наружном диаметре.

Жесткий магнитный диск представляет собой очень сложное устройство с высокоточной механикой чтения/записи и электронной платой, управляющей работой диска. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов, резких толчков.

Производители винчестеров сосредоточили свои усилия на создании жестких дисков большей емкости, надежности, скорости обмена данными и меньшей шумности. Можно выделить следующие основные тенденции развития жестких магнитных дисков:

♦ развитие винчестеров для мобильных приложений (например однодюймовые, двухдюймовые винчестеры для ноутбуков);
♦ развитие областей применения, не связанных с персональными компьютерами (в телевизорах, видеомагнитофонах, автомобилях). 

Для обращения к жесткому диску используется имя, задаваемое любой латинской буквой, начиная с С:. В случае если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D: и т. д. Для удобства работы в операционной системе предусмотрена возможность с помощью специальной системной программы условно разбивать один физический диск на несколько независимых частей, называемых логическими дисками.

Контрольные вопросы и задания

1. Емкость гибкого диска размером 3,5 дюйма равна 1,44 Мбайт. Лазерный диск может содержать 650 Мбайт информации. Определите, сколько дискет потребуется, чтобы разместить информацию с одного лазерного диска.

2. Диаметр гибких дисков задается в дюймах. Вычислите размеры гибких дисков в сантиметрах (1 дюйм = 2,54 см).

3. Установлено, что для записи одного символа необходим 1 байт памяти. В тетради в клеточку, состоящей из 18 листов, мы пишем по одному символу в каждой клетке. Сколько тетрадей можно записать на один гибкий диск с объем памяти 1,44 Мбайт?

4. Определите объем памяти, необходимой для хранения 2 млн символов. Сколько дисков объемом 1,44 Мбайт понадобится
для записи этой информации?

5. Ваш жесткий диск имеет объем 2,1 Гбайт. Устройство распознавания речи воспринимает информацию с максимальной скоростью 200 букв в минуту. Сколько времени надо говорить, чтобы заполнить 90 % объема памяти жесткого диска?

6. Каково назначение устройств хранения информации в компьютере?

7. Какие виды памяти вы знаете и в чем их основное различие?

8. Для чего при работе на персональном компьютере используется внешняя память?

9. В чем суть считывания и записи информации в память?

10. Какие вы знаете характеристики, общие для всех видов памяти?

11. Чем характеризуется внутренняя память компьютера?

12. В чем особенности постоянной памяти?

13. В чем особенности оперативной памяти?

14. В чем особенности кэш-памяти?

15. Укажите отличительные особенности внутренней и внешней памяти компьютера.

16. Какие специфические характеристики внешней памяти вы знаете? 

17. Перечислите известные вам носители информации с древних времен и до наших дней. Расположите их в хронологическом порядке.

18. Дайте краткую характеристику наиболее распространенным накопителям данных, которые используются в компьютере.

19. В чем отличие прямого и последовательного доступа к информации на носителях?

20. Укажите общие свойства и отличительные особенности гибких и жестких дисков.

21. Что такое CD, CD-ROM, CD-R?

22. Когда целесообразно использовать стример?

23. Заполните таблицу 18.1 данными для конкретной модели компьютера.

Оптические диски

Оптические, или лазерные носители — это диски, на поверхности которых информация записана с помощью лазерного луча. Эти диски изготовлены из органических материалов с напылением на поверхность тонкого алюминиевого слоя. Такие диски часто называют компакт-дисками у или CD (англ.

Compact Disk — компакт -диск). Лазерные диски в настоящее время являются наиболее популярными носителями информации. При габаритах (диаметр — 120 мм), сопоставимых с флоппи-дисками (диаметр — 89 мм), емкость современного компакт-диска примерно в 500 раз больше, чем у дискеты.

В отличие от магнитных дисков, лазерный диск имеет одну дорожку в виде спирали. Информация на дорожке-спирали записывается мощным лазерным лучом, выжигающим на поверхности диска углубления, и представляет собой чередование впадин и выпуклостей. При считывании информации выступы отражают свет слабого лазерного луча и воспринимаются как единица (1), впадины поглощают луч и, соответственно, воспринимаются как ноль (0).

Бесконтактный способ считывания информации с помощью лазерного луча определяет долговечность и надежность ком- пакт-дисков. Как и магнитные, оптические диски относятся к устройствам с произвольным доступом к информации. Оптическому диску присваивается имя — первая свободная буква латинского алфавита, не использованная для имен жестких дисков.

Различают два типа накопителей (оптических дисководов) для работы с лазерными дисками:

♦ устройство для чтения с компакт-дисков, которое позволяет только читать информацию, ранее записанную на диск. Этим обусловлено название оптического дисковода CD-ROM (от англ. Compact Disk Read Only Memory — компакт-диск только для чтения). Невозможность записи информации в этом устройстве объясняется тем, что в нем установлен источник слабого лазерного излучения, мощности которого хватает только для считывания информации;
♦ оптический дисковод, который позволяет не только считывать, но и выполнять запись информации на компакт-диск.

Он называется CD-RW (Rewritable). Устройства CD-RW обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности в процессе записи диска и прожигать микроскопические углубления на поверхности диска под защитным слоем, производя тем самым запись непосредственно в дисководе компьютера.

Диски DVD, также как и CD, хранят данные за счет расположенных выпуклостей (насечек) вдоль спиральных дорожек на отражающей металлической поверхности, покрытой пластиком. Используемый в устройствах записи/чтения DVD дисков лазер создает насечки более мелкого размера, что позволяет увеличить плотность записи данных.

Внедрение полупрозрачного слоя, который прозрачен для света с одной длиной волны и отражает свет другой длины волны, позволяет создавать двухслойные и двухсторонние диски и следовательно увеличить емкость диска при прежних размерах. При этом геометрические размеры DVD и CD одинаковые, что позволило создать устройства, способные воспроизводить и записывать данные как на CD, так и на DVD.

Поддержите проект

Друзья, сайт Netcloud каждый день развивается благодаря вашей поддержке. Мы планируем запустить новые рубрики статей, а также некоторые полезные сервисы. 

У вас есть возможность поддержать проект и внести любую сумму, которую посчитаете нужной.

Как устроена память в Android? В этой статье я хочу разрушить несколько мифов, а так же объяснить почему на самом деле удаляя системное приложение вы не получаете больше свободной памяти.

Начну издалека. Смотрите, вы скорее всего привыкли пользоваться Windows и уже имеете понимание как устроены диски и разделы в вашем компьютере. Не знаю как сейчас, а еще лет 10 назад было очень модно при установке Windows делать 2 диска — «C» и «D». На «С» обычно ставили систему, а «D» хранили важные файлы, типа музыки, фоток, документов.

Делали это, если кто забыл, для того чтобы через пол-года — год, спокойно отформатировать диск «С» и поставить винду заново. Раньше не у всех были антивирусы, да и софт был зачастую такого себе качества… Впрочем ушли от темы. Так вот физически диск как правило в компьютере был один, а при включении ПК видели «C» и «D». Как это?

Так вот разделов на диске может быть сколько угодно, и Android этим активно пользуется. Внутренняя память у вашего телефона одна, то есть один диск (чип), а нем куча разделов. Я сейчас не буду описывать все, в среднем их обычно 15 плюс-минус от производителя к производителю, опишу лишь основные.

Самый главный раздел это Bootloader. В этом разделе содержится загрузчик вашего телефона. Наиболее всего это похоже на Bios как в вашем ПК. Железо в первую очередь грузит загрузчик, а что делать дальше оно не знает, и тут уже загрузчик объясняет железу что далее надо грузить ядро — систему и.т.д.

Следующий раздел это ядро. Затем раздел System, это прошивка, затем раздел Data это уже доступная вам память в которой ваши загруженные приложения, фоточки и.т.п.

Я нарисовал некий воображаемый чип памяти вашего телефона. Скажем объемом 16гб. Скажем Bootloader занимает 100мб, еще 100мб занимает ядро (все размеры вымышленные, но близки к оригиналу). Прошивка (System) занимает скажем 3гб. Ну а все что осталось остается под Data.

Раздел Data делится на две основные части. Первая это ваши скаченные приложения и их данные. Например приложение Пикабу данные его кэш. Все это хранится в папке data на разделе Data (масло масленное, но что делать), остальное, ваши фотки, музыка, документы и.т.д. хранится в папке sdcard опять же на разделе Data.

У вас есть почти полный доступ в разделу Data. Почему почти, как нибудь в другой раз расскажу) Представьте что вы решили удалить приложение Пикабу, т.к. оно находится в разделе Data который вы же используете под свои файлы, вы сразу увидите немного освободившегося места.

А вот скажем если вы удалите установленный в прошивку Яндекс поиск с помощью root прав, памяти больше не становится. Почему так? Потому что все системные приложения называются системными от того что установлены они в систему. То есть в раздел System.

Вы наверное надеетесь что освобожденное место в System передается как то разделу Data, но это не так. Более того, я вам скажу, что вашей прошивке не нужно столько места сколько есть в System. Чтоб было понятнее — например ваш раздел System это 3гб от общей памяти. 3гб!

Этот размер определил производитель. Как правило на этом 3-х гб «диске» лежит 2-х гб прошивка, а один оставшийся гб сделан просто на всякий случай! Это делает производитель на будущее. Вдруг он решит в следующей версии прошивки сделать прошивку не 2гб, а 2.3гб!

Ну вот решит функцию какую нибудь добавить например. Вот для этого и сделан этот лишний гб. А теперь подумайте, кому станет легче, от того что вы удалить из раздела System пару приложений? Там и там был лишний 1 гб, а станет 1.1гб. При этом Android так устроен, что ему вообще ничего не нужно писать в System, он от туда только читает.

Размер раздела Data тоже задает производитель, как правило это то что осталось после всех остальных разделов. Ну то есть производитель увидел что после записи всех разделов осталось например 11гб, вот значит эти 11 и разметить под раздел Data. Короче говоря размер опять же фиксированый.

Можно ли переразметить разделы? Сделать скажем 2гб под System, оставшееся место отдать Data?

Чисто в теории можно, но практически этим почти никто не занимался. Мне попадались некоторые аппараты под которые были написаны скрипты переразметки, но это единицы аппаратов. Например у Samsung переразметка осуществляется Pit файлами, есть даже редактор этих файлов, но например мой Samsung Demo Unit Note 3 кушать такой измененный pit отказался.

Я видел скрипт для Galaxy Nexus через parted, но опять же возможности протестировать не было. Короче, переразметка это очень не популярное явление, да и опасное, чего уж там. В вашем компьютере Bios на отдельном чипе, и обычный пользователь вряд ли будет с ним хоть как то взаимодействовать, а значит не убьет.

В Android же bootloader находится на том же чипе что и основная память, а значит шанс случайно грохнуть раздел bootloader при манипуляциях с переразметкой памяти очень большой. С грохнутым bootloader вы не сможете прошить телефон, железо просто не будет знать что делать при включении.

Вот вообще знать не будет! Такой телефон придется прошивать на специальном оборудовании и самое главное далеко не каждого мастера оно есть. Конечно из этой ситуации бывают исключения, но сути это не меняет. В 90% случаев понадобиться специальное оборудование.

В заключение хочу сказать что если вы думаете, что удалив софт из System вашему телефону станет «легче дышать», то это снова не так, но об этом уже в следующий раз).

Есть два симптома, когда внутренней памяти на телефоне катастрофически не хватает:

  1. Приложения и Андроид тормозят, 
  2. Телефон выдает сообщение о том, что нужно принять меры и освободить занятое пространство.

Увеличив свободное место в памяти Андроид, вы сэкономите время и перестанете замечать тормоза на телефоне и планшете. На всю “уборку” уйдет от силы 20 минут.

Содержание:

Именно фотографии и видео “съедают” больше всего места на телефоне, за счет их можно быстро освободить место на карте памяти или во встроенном хранилище. Если ваш телефон не поддерживает карту памяти, переместите файлы, к которым вы обращаетесь нечасто, в облако.

Помимо Google Photos, можно обратить внимание на такие альтернативы как Dropbox, Flickr или Microsoft OneDrive.

Даже когда фотографии будут доступны только на сервере, вы легко получите к ним доступ, если у вас работает интернет. И главное, это действительно удобный и быстрый способ освободить пару гигабайт внутренней памяти!

1. В телефоне не хватало внутренней памяти, я половину фоток отправила на sd карту, после этого открываю, а они все какие-то мутные. Попробовала перекинуть обратно на внутреннюю память Андроид, но фотки такие же. Как мне вернуть прежние фотки, т.е. чтоб было как раньше подчистую без всяких искажений.

2. У меня не хватало внутренней памяти в телефоне, я захотела очистить ее. Я перебросила данные (фото, музыку) на карту памяти. Теперь файлы не читаются, хотя телефон видит карту. Как можно вернуть хотя бы фото?

3. Телефон Самсунг А5. Не знал, как увеличить внутреннюю память, переместил с помощью ноутбука папки с музыкой и файлами с внутренней памяти на sd карту. После этого при открытии папок все они оказались пустые. Файлы и музыку не видит ни телефон, ни компьютер. Внутренняя память телефона вроде не уменьшилась после этого. Как найти эти файлы?

Ответ. Вероятно, вы скопировали на карту памяти не оригиналы, а эскизы. Оригиналы фотографий могли остаться во внутренней памяти телефона. Если это не произошло, вам поможет программа DiskDigger.

Если в памяти устройства недостаточно места, следует скопировать файлы на компьютер (сделать резервную копию) и только после этого перемещать на карту памяти. Вам будет полезно ознакомиться с инструкцией, как очистить внутреннюю память на Андроиде (см. текст выше).

Оцените статью
OverComp.ru