СХЕМОТЕХНИКА БЛОКОВ ПИТАНИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ

СХЕМОТЕХНИКА  БЛОКОВ ПИТАНИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ Компьютер

Основные характеристики блока питания

Назначение компьютерного БП состоит в преобразовании сетевого напряжения переменного тока в постоянное, необходимое для узлов вычислительной машины. Рассмотрим основные параметры блоков питания этого типа:

Выходное напряжение. Их несколько и измеряются они относительно общей шины:

  • 3,3 В (кроме AT);
  • 5 В;
  • 5 В дежурные (кроме AT);
  • -5 В (в новых модификациях ATX может отсутствовать);
  • 12 В;
  • -12 В.

Важно. Кроме шин подачи питающих напряжений БП, ATX оснащаются служебными входами и выходами, о которых поговорим позже.

Общая выходная мощность. Может меняться от 200 Вт до 800 Вт и выше. Сам по себе параметр даёт только общее представление о выдаваемой мощности, поскольку блок питания создаёт несколько различных напряжений, рассчитанных каждый на свою нагрузку.

блок питания для ПК
Этот блок питания для ПК имеет мощность 400 Вт 

Ток или мощность на линии. Параметр указывает, какую мощность может выдать БП по той или иной шине. Некоторые производители вместо мощности указывают ток или и то и другое.

Мощность и токовая нагрузка
Мощность и токовая нагрузка по каждой шине этого блока питания указана прямо на корпусе

Форм-фактор. Промышленность выпускает блоки питания нескольких форм-факторов. Они зависят от габаритов системного блока, для которого они предназначены. Кроме разных габаритов, такие БП практически ничем друг от друга не отличаются и характеризуются теми же основными параметрами.

БП форм-фактор стандартный
БП форм-фактора стандартный ATX, SFX, TFX и Flex-ATX (слева направо и сверху вниз) 

Блок питания для arduino

Компьютерный БП можно успешно подключать для питания популярного набора Arduino. При этом никакой переделки самого БП не потребуется — достаточно будет его запустить без компьютера (см. раздел «Как включить без компьютера»).

Запитать проект можно и напряжением 5 В, и 12 — зависит от проекта и его энергопотребления. Просто откусываем любую колодку питания периферии и используем жёлтый ( 12 В) или красный ( 5 В) провода. Для обоих напряжений минусом будет чёрный провод. Кроме того, неиспользуемые напряжения можно применить для питания мощной периферии конструктора.

Подключение питания
Подключение питания к плате «Nano Arduino» от БП компьютера

Вот мы и выяснили, что умеет компьютерный блок питания, а заодно узнали, где его можно использовать.

Виды блоков питания и их различия

Существуют трансформаторные и импульсные блоки питания.

Рассмотрим их отличия, преимущества и недостатки.

Трансформаторный БП.

Простой классический вид блока питания в современных ПК практически не используется, схема устройства с двухполероудным выпрямителем представлена ниже.

Основными элементами устройства являются:

  1. Трансформатор;
  2. Выпрямитель;
  3. Сетевой фильтр.

Один из трансформаторных блоков представлен ниже.

Трансформатор через первичную обмотку принимает на себя из сети входящее напряжение.

Выпрямитель выполняет задачу преобразования переменного тока в постоянный однонаправленный.

Как правило, используются два типа выпрямителей:

  1. Двухполупериодный;
  2. Однополупериодный.

В обоих типах устройств используются диодные мосты состоящие:

  • в первом типе – из четырех диодов;
  • во втором – из двух диодов.

Использование других элементов в выпрямителе свойственно для блоков питания с удвоенным напряжением или трехфазных устройствах.

Сетевой фильтр представляет из себя обычный конденсатор обладающий большой емкостью. С помощью него сглаживаются пульсации тока.

Вместо обычных трансформаторов могут быть установлены автоматические устройства.

Чтобы понять, как работают блоки питания, необходимо обладать базовыми знаниями законов электротехники.

Габариты БП прямо пропорционально зависят от габаритов трансформаторов.

Размеры последних рассчитываются по специальной формуле.

Где:

  • n – количество витков на 1В напряжения;
  • f – частота переменного тока;
  • S – площадь сечения магнитопровода;
  • B – индукция магнитного поля, которая образуется в магнитопроводе.

Чем больше сечение магнитопровода S и количество витков N, тем больше будет трансформатор (его вес и габариты), это логично.

Но если площадь сечения провода уменьшить, то необходимо будет увеличить и количество витков N, которые могут не поместиться на трансформаторах небольших размеров.

При этом большое количество витков увеличит показатели активного сопротивления обмотки.

Если трансформатор маломощный, то большое количество витков с малым сечением никак не повлияет на работу такого БП, так как сила тока в таких устройствах мала.

Но если на таком трансформаторе увеличить мощность, соответственно увеличиться и сила тока, но так как сопротивление обмотки высокое, это приведет к большому рассеиванию тепловой мощности.

Отсюда можно сделать вывод что блоки питания, сконструированные для компьютеров на основе классических трансформаторах и работающие на частоте 50Гц могут иметь только большие размеры и вес.

Преимущества трансформаторных блоков питания:

  1. Надежная и простота конструкция устройств;
  2. Удобство ремонта (все элементы доступны и заменяемы);
  3. Радиопомехи минимальны или отсутствуют совсем.

Недостатки:

  1. Прямая пропорциональность мощности устройства к его весу и габаритам;
  2. Зависимость стабильности рабочего напряжения от КПД работы трансформатора и наоборот.
  3. Использование электротехнической стали повышает стоимость устройства и его металлоемкость.

Виды бп для компьютера

Сегодня существует два основных типа БП для настольных компьютеров:

БП формата AT, или так называемый старый, выпускался в трёх форм-факторах для работы с материнскими платами формата AT.

  • AT — для корпуса «башня».
  • Baby AT — для корпуса «мини-башня».
  • LPX — для плоского корпуса.

Формат AT снят с выпуска в 2001 году, но вполне успешно работает в стареньких ПК до сих пор.

БП формата AT
Блок питания формата AT 

БП ATX пришёл на смену AT в 2001 году с появлением материнских плат одноимённого формата. Имеет много модификаций, которые различаются в основном наличием или отсутствием дополнительных силовых разъёмов для питания материнской платы и периферии.

БП формата ATX
Блок питания формата ATX

ATX2 появился ещё позже и отличается от ATX разъёмом питания материнской платы. Вилка на нём несколько больше и имеет 24 контакта вместо 20 для ATX.

Зарядное устройство (зу) для аккумуляторов с защитой от перезарядки

Теперь попытаемся сделать из БП зарядное устройство для батарей и аккумуляторов. Сразу оговоримся, что для переделки подходит только блок питания, собранный на ШИМ- контроллере TL494 или его аналоге:

Аналоги контроллера TL494

Для примера мы доработаем БП, собранный на контроллере КА7500В (в таблицу не вошёл, но это тоже полный аналог. Разбираем блок, снимаем с него плату и отпаиваем провода, ведущие к колодкам питания.

толстый жгут
Этот толстый жгут проводов нам не нужен

Оставляем лишь пару жёлтых, пару чёрных и один зелёный.

провода
Минимум проводов, которые необходимо оставить 

Теперь зачищаем и соединяем зелёный и чёрный провода, подав сигнал «Power on» на контроллер БП.

Зеленый и черный провода
Зелёный и чёрный провода нужно соединить

Подключаем блок питания к сети. Вентилятор должен завращаться, а на шине 12 В (жёлтый провод) должно появиться напряжение.

Блок питания
Блок питания работает нормально

Но для нормальной зарядки автомобильного аккумулятора нам нужно не 12, а 14 вольт. Для этого находим резистор, который соединяет первый вывод ШИМ-контроллера с шиной 12 В. На схеме ниже он обозначен прямоугольником.

резистор
Этот резистор нужно заменить на прибор другого номинала

Выпаиваем резистор, измеряем сопротивление (в нашем примере 39 кОм) и вместо него впаиваем переменный, примерно вдвое большего номинала.

Временно впаиваем переменный резистор
Временно впаиваем переменный резистор

Включаем блок, вращаем потенциометр — выше 12,2 В не поднимается. Находим на плате резистор и диод, обозначенные на схеме ниже.

элементы
Эти элементы надо выпаять

Выпаиваем их. Эти действия позволят поднять напряжение до необходимых нам 14 В без срабатывания защиты по аварии «напряжение выше нормы».

резистор и диод
Защита и блок стабилизации отключены 

Снова включаем блок, выставляем потенциометром напряжение 14 В, выпаиваем его, замеряем сопротивление и на его место устанавливаем постоянный резистор такого же номинала.

сопротивление переменного резистора
Измеряем сопротивление переменного резистора и на его место впаиваем постоянный того же номинала 

Снова включаем, измеряем напряжение под нагрузкой, в качестве которой можно использовать лампу дальнего света автомобиля. Напряжение «просело» не более чем на 0,2 В? Всё в порядке.

Вот и вся доработка, позволившая нам сделать автомобильное ЗУ со стабилизированным напряжением зарядки. Прелесть его в том, что устройство не даст перезарядить батарею — как только напряжение на её клеммах поднимется до 14 вольт, зарядка прекратится.

Зарядное устройство с регулировкой напряжения и тока

Этот прибор, собранный на базе БП от компьютера, позволит заряжать батареи на любое напряжение и любой ёмкости, поскольку конечное напряжение и ток зарядки можно плавно регулировать почти от нуля до 25 В (напряжение) и до 8 А (ток). Кроме того, устройство имеет защиту от перегрузки, перегрева и короткого замыкания.

Сначала нам необходимо отключить узел стабилизации выходного напряжения. Для этого прослеживаем на печатной плате дорожку, соединяющую первый вывод микросхемы ШИМ с парой резисторов. Один из резисторов подключен к шине 12, второй к шине 5 В. Обычно где-то на этой дорожке впаяна перемычка (см. схему ниже). Если перемычка не предусмотрена, то просто перерезаем дорожку.

перемычка
Эту перемычку нужно удалить

После такой доработки узел стабилизации будет отключен и напряжение на линиях 12 и 5 В поднимется до 28 и 10 В соответственно. Но запустить БП с такой доработкой не получится — сработает узел защиты по перенапряжению. Отключаем его одним из следующих способов:

1) Выпаиваем диод, отмеченный на схеме ниже стрелкой.

схема, диод который нужно убрать
Этот диод выпаиваем или просто выкусываем

2) Диод не трогаем, а просто отрезаем вывод 4 микросхемы ШИМ от дорожки и соединяем его с общей шиной.

Ни в коем случае не включаем блок питания после переделки. Сначала надо выпаять все сглаживающие электролитические конденсаторы по линиям питания 12, -12, 5, -5, 3,3 В — они не рассчитаны на повышенное напряжение. Поскольку нас будут интересовать только бывшие линии ( 12 и 5 В), то взамен выпаянных ставим по этим шинам конденсаторы той же ёмкости, но на напряжение 35 и 25 В соответственно. Остальные конденсаторы, если не собираемся пользоваться другими напряжениями, можно не ставить (но выпаять старые нужно!).

Теперь вентилятор. Он подключен к шине 12 В, но на ней теперь будет 25. Опаяем его и, соблюдая полярность, запитаем от линии 5 В, поскольку на ней уже 10 — будет достаточно для вентилятора. Включаем блок питания и убеждаемся, что на шине 12 В (жёлтые провода) установилось напряжение порядка 28 В, а на шине 5 (красные провода) — напряжение 10.

Важно! Зелёный провод не забываем оставить на месте и припаять его к общей шине.

На этом доработку блока питания можно закончить. Теперь настала очередь узлов регулировки напряжения и тока, которые будут одновременно выполнять роль защиты, поскольку штатную мы отключили. Взглянем на схему ниже:

Схема узла
Схема узла регулировки напряжения и тока (кликните для увеличения)

На транзисторах VT1 и VT2 собран узел регулировки напряжения. Сама регулировка идёт при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулирует ток потенциометр R17. Резисторы R7 и R19 — токовыравнивающие.

Далее, напряжение поступает на контрольный вольтметр PV1, затем — через амперметр PA1 и предохранитель FU2 на клеммы Х6, Х7, к которым подключается заряжаемый аккумулятор.

О деталях. Силовой транзистор VT1 взят из такого же блока питания, в котором он работает в качестве высоковольтного преобразователя. Микросхема LM338, к сожалению, отечественного аналога не имеет, но найти её в магазине несложно, а цена небольшая (от 20 до 100 рублей, в зависимости от производителя). В качестве выравнивающих резисторов R7 и R19 выступают два 10-, 20-сантиметровых отрезка обычного монтажного провода сечением 1 и 2 мм. На месте PV1 будет работать любой вольтметр постоянного тока с пределом измерения 30–50 В. Амперметр PA1 имеет предел 10–15 А, на его месте можно использовать микроамперметр с соответствующим шунтом.

Весь узел можно собрать навесным монтажом, закрепив транзисторы и стабилизаторы на одном мощном радиаторе через слюдяные прокладки. Подойдет, например, радиатор от процессора ПК. Здесь в роли токовыравнивающих резисторов будут выступать монтажные провода. Автор этой идеи поступил так:

размещение узла регулировки
Вариант размещения узла регулировки в корпусе БП

Ну и перед использованием прибора, естественно, его нужно проверить под нагрузкой, подключив вместо аккумулятора автомобильную лампу дальнего света.

Полезно! Прибор можно применять в качестве регулируемого (1,2–25 В) лабораторного блока питания с настраиваемым ограничением по току.

Как включить без компьютера

Сначала поговорим о БП типа AT. Включаются такие блоки обычным силовым выключателем, подающим напряжение 220 В на БП. Он может быть встроен прямо в блок питания (первые модификации) или быть выносным, установленным на передней панели системного блока.

Блок питания с выключателем
Блок питания AT с выносным выключателем

Если выключателя в комплекте нет, то назначение проводов можно определить по их цвету:

  • чёрный и белый — питание БП;
  • синий и коричневый — провода от вилки.

Чтобы подать на блок питания напряжение, необходимо замкнуть чёрный с коричневым и синий с белым. Делать это нужно, конечно, при отключенной от сети вилке, чтобы не попасть под напряжение 220 В.

подключение выключателя питания к блоку
Стандартное подключение выключателя питания к блоку AT

С блоком питания ATX дело немного сложнее. Чтобы он включился, мало подать напряжение сети. Дополнительно нужно изобразить из себя материнскую плату и подать на вход «Power on» низкий логический уровень. Для этого скрепкой замыкаем зелёный провод с любым чёрным на колодке, назначенной для питания материнской платы.

сигнал включения на шину
Подача сигнала включения на шину «Power on»

Нередко блоки питания ATX оснащаются дополнительным силовым выключателем, расположенным на «спине ПК». Им практически никто не пользуется, поэтому многие даже не знают о его существовании.

выключатель
Этот выключатель должен быть включен

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы
Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
Установленный на плате предохранитель
Установленный на плате предохранитель
  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
Дисковый термистор (обозначен красным)
Дисковый термистор (обозначен красным)
  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
Выпрямительные диоды (обведены красным)
Выпрямительные диоды (обведены красным)

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;
Отмеченные на плате диодные сборки
Отмеченные на плате диодные сборки
  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Принцип работы компьютерного блока питания

Статья написана на основе книги А.В.Головкова и В.Б Любицкого”БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT” Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на: 
• выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
• двухконтактный разъем JP1, ответная часть которого находится на плате.
С разъема JP1 переменное напряжение сети поступает на:
• мостовую схему выпрямления BR1 через терморезистор THR1;
• первичную обмотку пускового трансформатора Т1.

СХЕМОТЕХНИКА  БЛОКОВ ПИТАНИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240 В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного 310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО – сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4. 

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы. 

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к “корпусу”. Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора. 

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами (“мертвыми зонами”). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое – конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).

Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее меж-витковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается. 

Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах. 

Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора.
Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки.
Обмотка IV обеспечивает получение выходного напряжения 5В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена).
Элементы L2, СЮ, С11, С12 образуют сглаживающий фильтр в канале 5В.
Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды за-шунтированы успокаивающими RC-цепочками С8, R10nC9, R11.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя. 

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения 12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения 5В. Это даст возможность использовать диоды Шоттки в канале выработки 12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале 12В. 

Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин 5В и 12В после выключения ИБП из сети.
RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью.
Обмотка И с пятью отводами обеспечивает получение отрицательных выходных напряжений -5В и-12В.
Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12В, а диоды D5, D6 – в канале -5В.
Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов.
Обмотка II, также как и обмотка III, зашунтиро-вана успокоительной RC-цепочкой R13, С13.

Средняя точка обмотки II заземлена. 

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов. 

Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется “пробитым”, то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя.
Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них.
Например, в случае, если “пробит” диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 – L3 -D7- D5- “корпус”.
Стабилизация выходного напряжения 5В осуществляется методом ШИМ. Для этого к шине выходного напряжения 5В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале 5В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref= 5B. При изменениях уровня напряжения на шине 5В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение 5В к номинальному значению (при уменьшении напряжения на шине 5В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения -уменьшается).
Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается
между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).

Выходное напряжение 12В в данном ИБП не стабилизируется. 

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов 5В и 12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине 5В, а значит и на шине 12В, т.к. напряжение с шины 5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя: 

• ограничивающую схему контроля ширины управляющих импульсов;
• полную схему защиты от КЗ в нагрузках;
• неполную схему контроля выходного перенапряжения (только на шине 5В).

Рассмотрим каждую из этих схем. 

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения. 

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3. 

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений ( 5В и 12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов 5В и 12В имеют номинальные величины, потенциал анода диода D11 составляет около 5,8В, т.к. через делитель-датчик протекает ток с шины 12В на шину 5В по цепи: шина 12В – R17- D11 – шина 56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref= 5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ. 

В случае КЗ в нагрузке канала 12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom – R39 – R36 -б-э Q4 – “корпус”.

Открывание выходного транзистора компаратора 1 подключает резистор R39 к “корпусу”, и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах 5В и 12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к “корпусу”. Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref – э-6 Q6 – R30 – к-э Q5 -“корпус”. 

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала 5В приведет к тому, что потенциал анода диода D11 будет составлять всего около 0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref= 5B, а резистор R21 – к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине 5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения 5В. Поэтому, пока напряжение на этой шине не превышает 5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине 5В выше 5,1В стабилитрон “пробивается”, и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref= 5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине 5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим. 

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3. 

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref= 5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom – R39 – R30 – С20 – “корпус”.
Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom – R33 – R34 – 6-э Q3 – “корпус”.
Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: ( )С20 – R61 – D14 – к-э выходного транзистора компаратора 3 – “корпус”.

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера. 

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

Распиновка разъёмов и напряжения

В принципе, распиновку разъёмов блока питания компьютера знать необязательно, поскольку каждой шине соответствует свой цвет провода:

  • чёрный: общая шина;
  • красный: 5 В;
  • жёлтый: 12 В;
  • оранжевый: 3,3 В;
  • фиолетовый: 5 VSB;
  • синий: -12 В;
  • белый: -5 В;
  • зелёный: Power on;
  • коричневый: 3.3 V sense;
  • серый: Power good.

Важно! В блоках питания AT провод, отвечающий за сигнал “Power good”, имеет оранжевый цвет.

Для тех, кого распиновка всё же интересует, мы её покажем, сохранив расцветку проводов:

розетка AT
12-контактная розетка AT на материнской плате

Типы разъёмов

Это касается разъёмов питания материнской платы. В “старом” AT для этих целей использовались два 6-контактных разъёма, которые подключались к одному 12-контактному разъёму на материнской плате.

Разъемы AT
Разъёмы AT на материнской плате (слева) и на БП

Блок питания ATX оснащён более мощным 20-контактным разъёмом для подачи тока на материнскую плату.

Вилка ATX
Вилка и розетка формата ATX

У ATX2 есть вилка для подключения материнской платы на 24 контакта.

Вилка ATX2
Вилка и розетка формата ATX2

Кроме того, БП типа ATX часто содержат дополнительные колодки для служебных сигналов и питания мощных потребителей, расположенных на материнской плате – например, процессора и видеокарты.

разъемы
Дополнительные разъёмы для энергообеспечения мощных потребителей

На фото цифрами обозначены:

  1. «PCIe8 connector» для питания видеокарты.
  2. «PCIe6 connector» для питания видеокарты.
  3. «EPS12V» для запитки процессора.
  4. «ATX PS 12V» для запитки процессора.

Изменения произошли и в колодках питания периферии. В блоке ATX появился разъём для питания SATA устройств, а в последних версиях исчезла вилка питания НГМД (флоппи-дисков).

Вилки питания
Вилки для питания периферии

На фото цифрами обозначены:

  1. AMP 171822-4 — мини для питания слаботочной периферии (обычно НГМД).
  2. Molex 8981 — для питания относительно мощной периферии (накопитель на жёстких магнитных дисках и CD-привод с IDE-интерфейсом).
  3. Molex 88751 — для питания устройства с интерфейсом SATA.

Устройство и работа импульсного блока питания

В импульсные блоки питания внедрены другие конструкторские решения, благодаря которым увеличивается частота тока f.

Ниже представлена простая схем одноконтактного БП импульсного типа.

Такой тип устройств является инверторной системой.

Принцип работы БП импульсного типа следующий:

  1. На первом этапе переменный ток, поступающий в устройство, выпрямляется;
  2. Далее постоянный ток конвертируется в прямоугольные частотные импульсы и скважности.
  3. Дальше, в зависимости от конструкции БП (с гальванической развязкой или без нее), прямоугольные импульсы поступают на трансформатор, в первом случае, или на выходной ФНЧ, во втором случае.

Основное отличие импульсных БП от классических:

  1. С повышением частоты тока, увеличивается КПД работы трансформатора;
  2. Минимальные требования к сечению сердечника и его материалу, последний может быть изготовлен из ферримагнитных материалов;
  3. Возможность установки в такие БП трансформаторов небольших размеров с малым весом.
  4. Использование отрицательной обратной связи позволяет стабилизировать выходное напряжение в устройстве, а это влияете на стабильность работы всего ПК.

Отрицательная обратная связь внедряется в устройства по-разному и зависит это от наличия в конструкции БП гальванической развязки.

Если такая развязка присутствует, то применяется способ оптрона, в другом случае используются в качестве связи одна из выходных обмоток трансформатора и резисторный делитель напряжения.

Сигнал обратной связи (СОС) зависит от выходного напряжения, в свою очередь скважность на выходе ШИМ-контроллера зависит от СОС.

Плюсы импульсных блоков питания.

  1. Высокий КПД который может достигать 92-98%;
  2. Не большой вес и габариты;
  3. Высокая надежность работы;
  4. Широкий диапазон выходной частоты и напряжения. Это позволяет использовать такие БП в разных странах;
  5. Хорошая защита от короткого замыкания;
  6. Меньшая стоимость.

Недостатки:

  1. Устройства такого типа излучают высокочастотные помехи и даже шумоподавления, внедренные производителями, не решают проблему;
  2. Плохая ремонтопригодность;
  3. Наличие проблемы высоких гармоник (не во всех устройствах).

Надеемся мы помогли вам разобраться что такое блок питания компьютера и как он работает.

Последнее обновление 30.11.2022

Оцените статью
OverComp.ru