Как правильно установить блок питания внизу корпуса

Как правильно установить блок питания внизу корпуса Компьютер

Анализ результатов

Если просто бросить взгляд на последний столбец таблицы первого теста, то невольно приходит мысль о неэффективности размещения блока питания внизу – ‘в среднем’ температура стала больше, а сам блок питания как был горячим, так и остался. Но это беглый взгляд, давайте копнем глубже, и смысл в этом определенно присутствует.

Датчик номер 6.

Он установлен на материнской плате и находится левее PCI разъемов, а потому отражает температуру в этой зоне. Пока заглушки установлены, его показания мало зависят от варианта установки блока питания. Если же их снять, то это обеспечит приток прохладного воздуха и температура снизится… но только для случая с блоком питания вверху.

Впрочем, если сравнить изменение показаний этого датчика со всеми остальными, то станет понятна бесполезность использования программного мониторинга для получения адекватных результатов замеров. Ну, сами посудите – при удалении заглушек этот датчик показал уменьшение температуры на 6 градусов, а другие датчики зафиксировали изменения только на 0.5-1 градус.

Датчики 1-5 показывают разность температур с окружающей средой, отсюда такие ‘маленькие’ цифры. Если хотите абсолютных величин, то прибавьте ту температуру воздуха, что и у вас в комнате. Положим, это 27 градусов. Значит, показания датчика ‘16 градусов’ следует понимать как 16 27=43 градуса, а это уже воспринимается как ‘довольно тепло’.

Датчик номер 1, набор микросхем nForce4.

Его особенность в том, что прямо под ним находится эмулятор видеокарты, нагревательный элемент. Когда блок питания внизу, то он хоть и немного, но отбирает тепло от ‘видеокарты’ и несколько улучшает перемешивание воздушной массы в этой зоне. Довольно странно, что наибольший эффект получается при большей скорости вращения корпусных вентиляторов.

Датчик номер 2, системная память.

Для случая размещения блока питания внизу, это место показывало явное ухудшение охлаждения. Причин несколько.

Во-первых, при размещении блока питания внизу, сама системная плата ’поднимается’ к верху корпуса. Это еще ничего, но нагретый воздух собирается вверху, при отсутствии активного перемешивания верхняя часть системной платы оказывается более теплой. Полученные измерения подтверждают эту предпосылку – при увеличении скорости вращения корпусных вентиляторов температура системной памяти снижается.

Во-вторых, когда блок питания установлен вверху, то он немного захватывает зону системной памяти. Точнее не так, его вентилятор ближе к памяти, а потому он немного забирает нагретый воздух из тепловой зоны над памятью, что немного снижает ее температуру.

Датчик номер 3, радиатор процессора.

Тут все просто и никаких разночтений. Когда блок питания вверху, то он работает в паре с корпусным вентилятором, что обеспечивает лучшее охлаждение. При переносе блока питания вниз сразу получается ухудшение на 2-3 градуса. В качестве оправдания напомню, что в корпуса с расположением блока питания вниз, довольно часто предусмотрено место или уже установлены два корпусных вентилятора на выдув. Один на обычное место и еще один (дополнительный) туда, где в стандартном варианте находился бы блок питания.

Датчик номер 5 (четвертый пока пропустим), вытяжной корпусной вентилятор.

Чем меньше его обороты, тем выше температура выходного потока. Когда блок питания вверху, то он помогает корпусному вентилятору, особенно на низкой скорости вращения последнего.

Датчик номер 4, температура воздушного потока из блока питания.

Ну вот, дошли до самого интересного. Блок питания ставят вниз только из того соображения, чтобы не нагревать его теплом от видеокарты и процессора. Провели тест и оказалось, что от места расположения температура блока питания не меняется? Ну, сами посудите – из таблицы видно, что разница между обоими вариантами установки составляет 1-2 градуса. Смысла нет! … Не совсем.

Когда блок питания был установлен в штатном варианте, сверху, то сила потока воздуха из него примерно равнялась потоку из корпусного вентилятора на 1500 об/мин. При установке вниз из блока питания выходило едва ощутимое дуновение. Даже больше, в первые несколько минут вентилятор на нем почти не вращался.

Этой ‘глупости’ есть вполне обычное объяснение. Дело в том, что современные блоки питания регулируют скорость вращения своего вентилятора в зависимости от температуры в контрольной точке, которая, обычно, располагается на радиаторе выпрямительных диодов.

Но если нагрузка не очень большая (300 Вт для блока питания ‘550 Вт’ – это немного), то радиатор выпрямительных диодов нагревается недостаточно сильно и вентилятор вращается медленно. Вообще-то, есть два типа регуляторов – одни останавливают вентилятор при температуре ниже пороговой, как тестовый блок питания (
FSP550-80GLN
), а есть и такие, которые просто снижают скорость вращения до минимума, но продолжают крутиться. Последний вариант больше подходит для размещения вниз.

Ну хорошо, вентилятор в блоке питания вращается слабо, но почему же воздух из него нагрет столь сильно? Над блоком питания стоит эмулятор видеокарты, который нагревает воздух. По идее, этот воздух должен подниматься вверх и удаляться из корпуса верхним корпусным вентилятором, к тому же есть экран из видеоплаты PCI.

Да, все так, но относительно высокая скорость прокачки воздуха через системный блок не позволяет нагретому воздуху спокойно подниматься вверх. Происходит перемешивание и вся область вокруг ‘видеокарты’ получает примерно равную температуру, в том числе и под ‘ней’.

Второй тест позволяет оценить чувствительность системы охлаждения к источнику охлаждающего воздуха блока питания и влияние дополнительного притока воздуха с низа корпуса, от перфорации в дне.

Когда блок питания для охлаждения берет воздух из корпуса, то его температура существенно больше, чем при использовании внешнего притока. На производительности общего охлаждения это сказывается, но как-то вяло. Здесь эффективнее оказывается простая перфорация в дне корпуса.

Последний вариант установки питания, во втором тесте, при своей глупости принес некоторую полезную информацию. В этом случае БП был установлен окном вентилятора вниз, но дно в корпусе системного блока осталось закрытым. Между блоком питания и дном остался небольшой промежуток, вот через эту щель и забирался воздух для охлаждения.

В результате получилось что-то среднее между обоими вариантами ориентации блока питания, 8 градусов. Напомню, ‘нормальная’ установка окном вентилятора вверх или вниз давали 13.5 и 4.3 градуса соответственно. Довольно трудно придумать практическое применение такого решения. Разве что, при большой запыленности в помещении и обязательном применении фильтра на втяжном корпусном вентиляторе.

Вторичная сторона

Теперь можно посмотреть на вторую, низковольтную часть БП. Вторичная схема производит четыре выходных напряжения: 5, 12, ?12 и 3,3 вольта. Для каждого выходного напряжения отдельная обмотка трансформатора и отдельная схема для получения этого тока. Силовые диоды (ниже) преобразуют выходы трансформатора в постоянный ток.

Затем индукторы и конденсаторы фильтруют выход от всплесков напряжения. БП должен регулировать выходное напряжение, чтобы поддерживать его на должном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в БП используется несколько различных методов регулирования.

Как правильно установить блок питания внизу корпуса
Крупным планом показаны выходные диоды. Слева вертикально установлены цилиндрические диоды. В центре — пары прямоугольных силовых диодов Шоттки, в каждом корпусе по два диода. Эти диоды прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб. Они используются в качестве резисторов для измерения тока

Основными являются выходы 5 и 12 В. Они регулируются одной микросхемой контроллера на основной стороне. Если напряжение слишком низкое, микросхема увеличивает ширину импульсов, пропуская больше мощности через трансформатор и увеличивая напряжение на вторичной стороне БП.

А если напряжение слишком высокое, чип уменьшает ширину импульса. Примечание: одна и та же схема обратной связи управляет выходами на 5 и 12 В, поэтому нагрузка на одном выходе может изменять напряжение на другом. В более качественных БП два выхода регулируются по отдельности5.

Как правильно установить блок питания внизу корпуса
Нижняя сторона печатной платы. Обратите внимание на большое расстояние между цепями основной и вторичной сторон БП. Также обратите внимание, какие широкие металлические дорожки на основной стороне БП для тока высокого напряжения и какие тонкие дорожки для схем управления

Вы можете задать вопрос, как микросхема контроллера на основной стороне получает обратную связь об уровнях напряжения на вторичной стороне, поскольку между ними нет электрического соединения (на фотографии виден широкий зазор). Трюк в использовании хитроумной микросхемы под названием оптоизолятор.

Внутри чипа на одной стороне чипа инфракрасный светодиод, на другой светочувствительный фототранзистор. Сигнал обратной связи подаётся на LED и детектируется фототранзистором на другой стороне. Таким образом оптоизолятор обеспечивает мост между вторичной и первичной сторонами, передавая информацию светом, а не электричеством6.

Источник питания также обеспечивает отрицательное выходное напряжение (?12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулирование питания ?12 В кардинально отличается от регулирования 5 и 12 В. Выход ?

12 В управляется стабилитроном (диодом Зенера) — это специальный тип диода, который блокирует обратный ток до определённого уровня напряжения, а затем начинает проводить его. Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый) под управлением транзистора и стабилитрона (поскольку этот подход расходует энергию впустую, современные высокоэффективные БП не используют такой метод регулирования).

Как правильно установить блок питания внизу корпуса
Питание ?12 В регулируется крошечным стабилитроном ZD6 длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор A1015 находятся на верхней стороне платы

Пожалуй, наиболее интересной схемой регулирования является выход 3,3 В, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, которые заставляют его работать как ключ (переключатель). Когда ток подаётся в индуктор магнитного усилителя, то сначала он почти полностью блокирует ток, поскольку индуктор намагничивается и магнитное поле увеличивается.

Когда индуктор достигает полной намагниченности (то есть насыщается), его поведение внезапно меняется — и индуктор позволяет частицам течь беспрепятственно. Магнитный усилитель в БП получает импульсы от трансформатора. Индуктор блокирует переменную часть импульса. Выход 3,3 В регулируется изменением ширины импульса7.

Как правильно установить блок питания внизу корпуса
Магнитный усилитель представляет собой кольцо из ферритового материала с особыми магнитными свойствами. Вокруг кольца намотано несколько витков проволоки

Импульсы к трансформатору

К этому моменту входной переменный ток преобразован в высоковольтный постоянный ток около 320 В

. Постоянный ток нарезается на импульсы переключающим (импульсным) транзистором (

switching transistor

на схеме выше). Это силовой МОП-транзистор (MOSFET)

. Поскольку во время использования он нагревается, то установлен на большом радиаторе. Импульсы подаются в главный трансформатор, который в некотором смысле является сердцем БП.

Трансформатор состоит из нескольких катушек проволоки, намотанных на намагничиваемый сердечник. Высоковольтные импульсы, поступающие в первичную обмотку трансформатора, создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в них напряжение.

Так ИБП безопасно вырабатывает выходной ток: между двумя сторонами трансформатора нет электрического соединения, только соединение через магнитное поле. Другим важным аспектом является то, что в первичной обмотке много оборотов проволоки вокруг сердечника, а на вторичных контурах гораздо меньше.

Переключающий транзистор3 управляется интегральной схемой под названием «ШИМ-контроллер режима тока UC3842B». Этот чип можно считать мозгом БП. Он генерирует импульсы на высокой частоте 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, чип производит более широкие импульсы, чтобы пропускать больше энергии через трансформатор4.

Как выбрать блок питания

Большинство блоков питания ориентированы исключительно на высокую мощность, которую нужно отдавать другим компонентам в системном блоке. (Более подробно читайте в статье про устройство системного блока). Однако, есть и другие критерии, которые не уступают по важности главному. Как раз-таки они и будут расписаны ниже.

  • Мощность, передаваемая на другие компоненты. Для стабильной работы ПК со «слабыми» комплектующими (видеокартой с небольшим объемом памяти, оперативной памятью с малым энергопотреблением и процессором с низкой частотой), требуется всего около 350 Ватт. Но если же это компьютер с более мощными компонентами (к примеру, для игр или ресурсоемких программ), то здесь уже требуется больше энергии – примерно 600 Ватт. Для серверов может использоваться блок, обладающий мощностью уже ближе к 1000 Ватт.
  • Система охлаждения. Учитывая мощность, которую передает БП видеокарте и другим элементам, важно знать, как эффективно будет отдаваться тепло с этого компонента.

На систему охлаждения стоит обращать особое внимание, ведь от её зависит срок службы БП. С маломощным кулером и плохим теплоотводом есть шанс, что компонент сгорит, а еще хуже – взорвется.

  • Сертификация. Она характеризует эффективность – КПД. Есть 6 типов сертификатов: «80 Plus» – более 80%; «Bronze» – больше 82%; «Silver» – 85% и более; «Gold» – от 87%; «Platinum» – 90% и больше; «Titanium» – от 92%. Чем выше процент КПД, тем лучше, ведь таким образом можно использовать энергию рационально, экономя электричество.
  • Размер. Это такой же важный пункт, как и остальные, ведь необходимо, чтобы компонент смог уместиться в корпусе. Всего существует 3 типа размеров БП. Первый и самый популярный – ATX, его габариты – 150x86x140 миллиметров. Второй и чуть меньший – SFX, чьи размеры составляют 125×51,5×100 мм. Последний, достаточно редкий – TFX, ведь он напоминает прямоугольник по своим габаритам: 86x65x175 миллиметров.

Есть еще пункт, касающийся внешнего вида (к примеру, RGB-подсветка) – не обязателен, ведь это уже дело эстетики. А остальные параметры – важные при покупке, их стоит учитывать при выборе.

Как установить блок питания в системный блок пк

Установите блок питания над входным отверстием для воздуха (на дне корпуса).
Установите блок питания над входным отверстием для воздуха (на дне корпуса).

Блок питания с множеством проводов кажется самым сложным устройством, однако при его установке трудности не возникают. Установите его воздухозаборником вниз к отверстию в днище корпуса и закрепите четырьмя винтами к задней стенке.

Немного потрудиться придется в моделях be quiet: здесь нужно закрепить блок питания под выступом на боковой стенке, который является единственным плохо обработанным местом во всем корпусе, вследствие чего можно легко поцарапать блок питания.

При подключении вы сначала проводите через отверстие весь жгут проводов за опорной пластиной, а затем выводите отдельные разъемы в нужных местах: к материнской плате, к приводам, накопителям и прочим комплектующим.

Размещение проводов: Для лучшей циркуляции воздуха все провода прокладываются позади опорной пластины и выводятся только в соответствующем месте.
Размещение проводов: Для лучшей циркуляции воздуха все провода прокладываются позади опорной пластины и выводятся только в соответствующем месте.

Для материнской платы необходим широкий 24-контактный главный разъем и дополнительно 8-контактный разъем питания 12 В (P8) для процессора. При использовании внешней видеокарты не стоит забывать про их 2×4- или 2×6-контактные разъемы. Кроме того, для каждого SATA-привода необходима своя линия питания.

Перед креплением неиспользуемых и свободных проводов кабельными стяжками, включите компьютер для того, чтобы проверить, все ли радиаторы работают, и запускается ли ПК до меню UEFI; при необходимости проверьте штекерные соединения.

Фото: Компании-производители; CHIP Studios

Нестандартное расположение вентиляционных отверстий

Классически в стандартных корпусах считается правильным охлаждение сквозным воздушным потоком, который направлен от передней стенки корпуса к задней

. Довольно продолжительное время многие компании-производители, например Intel, рекомендуют для охлаждения дополнительно использовать левую стенку для непосредственного подвода воздуха из отверстия к процессорному кулеру.

Теоретически внутри корпуса в любом месте можно устанавливать дополнительные кулеры

для улучшения циркуляции воздуха. Очень важно помнить главное правило: на левой боковой и передней стенках воздух нагнетается в корпус, а на задней стенке – горячий воздух должен выбрасываться наружу. При использовании нестандартного расположения охлаждения на левой стенке важно контролировать, чтобы горячий воздух от задней стенки не попадал по прямой траектории в воздухозабор левой стенки компьютера.

Что же касается решеток для воздуха, которые можно часто наблюдать в бюджетных вариантах корпусов в форме отверстий в металлической пластине: эффективность такого вида воздухозабора значительно меньше, чем вентилятора. Монтирование на это место проволочной решетки позволит значительно облегчить работу кулера и уменьшить шум от воздушных потоков.

Также данное вентиляционное отверстие можно модернизировать посредством создания пылевого фильтра

из подручных средств, например, марлевого бинта или москитной сетки – все это позволит предотвратить проникновение пыли внутрь компьютера. Но очень важно при этом в будущем регулярно очищать эти фильтры, так как они очень быстро забиваются пылью. А забитый пылью фильтр сделает не только систему охлаждения неэффективной, но и ухудшит её.

Преобразование ac/dc


Переменный ток с частотой 60 герц в сети меняет своё направление 60 раз в секунду (AC), но компьютеру нужен постоянный ток в одном направлении (DC).

на фотографии ниже преобразует переменный ток в постоянный. Выходы постоянного тока на выпрямителе отмечены знаками

?

, а переменный ток входит через два центральных контакта, которые

. Внутри выпрямителя — четыре диода. Диод позволяет току проходить в одном направлении и блокирует его в другом направлении, поэтому в результате переменный ток преобразуется в постоянный ток, протекающий в нужном направлении.

Как правильно установить блок питания внизу корпуса
На мостовом выпрямителе видна маркировка GBU606. Цепь фильтра находится слева от выпрямителя. Большой чёрный конденсатор справа — один из удвоителей напряжения. Маленький жёлтый конденсатор — это специальный керамический Y-конденсатор, который защищает от всплесков напряжения

Ниже — две схемы, как работает мостовой выпрямитель. На первой схеме у верхнего входа переменного тока положительная полярность. Диоды пропускают поток на выход DC. На второй схеме входы переменного тока поменяли полярность, как это происходит постоянно в AC.

Как правильно установить блок питания внизу корпуса
На двух схемах показан поток тока при колебаниях входного сигнала AC. Четыре диода заставляют ток течь в направлении по стрелке

Современные БП принимают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому могут использоваться в разных странах независимо от напряжения в местной сети. Однако схема этого старого БП не могла справиться с таким широким диапазоном. Поэтому предусмотрен переключатель для выбора 115 или 230 В.

Как правильно установить блок питания внизу корпуса
Переключатель 115/230 В

Переключатель использует умную схему с удвоителем напряжения. Идея в том, что при закрытом переключателе (на 115 В) вход AC обходит два нижних диода в мостовом выпрямителе, а вместо этого подключается непосредственно к двум конденсаторам.

Когда «плюс» на верхнем входе AC, полное напряжение получает верхний конденсатор. А когда «плюс» снизу, то нижний. Поскольку выход DC идёт с обоих конденсаторов, на выходе всегда получается двойное напряжение. Дело в том, что остальная часть БП получает одинаковое напряжение независимо от того, на входе 115 или 230 В, что упрощает его конструкцию.

Как правильно установить блок питания внизу корпуса
Схема удвоителя напряжения. Каждый конденсатор получает полный вольтаж, поэтому на выходе DC двойное напряжение. Серые диоды не используются в работе удвоителя

Результаты тестирования

Датчики 1-5 измеряют разность между температурой измеряемых точек и воздуха вне системного блока. Датчик номер 6 показывает температуру печатной платы, он находится где-то в недрах материнской платы, предположительно около верхнего разъема PCI, и его показания особого смысла не несут.

Первый тест.

Датчик Скорость вентиляторов, об/мин БП вверху, градусы БП внизу, градусы Разность, градусы
nForce4 1500 35.1 31.8 3.3
1000 38 37.8 0.2
1000
**
37.9 36.9 1
Системная память 1500 22.4 24.2 -1.8
1000 25.2 30.5 -5.3
1000
**
26.6 30.2 -3.6
Радиатор процессора 1500 22.3 25 -2.7
1000 27.9 31 -3.1
1000
**
27.4 29.2 -1.8
Решетка БП 1500 13.2 12.8 0.4
1000 15.5 14.4 1.1
1000
**
16 14.5 1.5
Вытяжной вентилятор 1500 11.1 13.5 -2.4
1000 14.8 19.7 -4.9
1000
**
14.9 19 -4.1
Материнская плата
*
1500 54
*
53
*
1
1000 57
*
57
*
0
1000
**
51
*
56
*
-5

* Все датчики, кроме этой позиции, показывают перегрев к температуре окружающего воздуха вне системного блока.** Дополнительно сняты заглушки свободных плат расширения.

Второй тест.

Нижнее расположение блока питания, меняется ориентация его входного отверстия вверх или вниз, и дополнительная перфорация внизу корпуса. Корпусные вентиляторы работали со скоростью вращения 1000 об/мин.

Ориентация входного отверстия БП Дополнительная перфорация низа корпуса Воздух из БП, градусов Воздух из корпуса, градусов
Отверстием вверх,

воздух из корпуса
нет 13.5 18.9
есть 10.1 16.8
Отверстием вниз,

воздух снаружи
нет 4.3 20
есть 3.6 17.7
нет
*
8
*
19.5
*

* Закрыт приток воздуха к вентилятору БП (довольно глупый режим).

Оцените статью
OverComp.ru