Как я собирал бесшумный компьютер / Хабр

Как я собирал бесшумный компьютер / Хабр Компьютер
Содержание
  1. Что делать?
  2. 9. На что монтировать вентиляторы
  3. Корпуса
  4. 1. Материал шумоизоляции корпуса
  5. 2. Влияние окна в корпусе на шумоизоляцию
  6. 1. Вентилятор с подшипником скольжения
  7. 10. Как отрегулировать скорость вращения вентилятора
  8. 11. Форма и количество лопастей
  9. 2. Вентилятор с подшипником качения
  10. 3. Вентилятор с гидродинамическим подшипником
  11. 4. Вентилятор с магнитным центрированием
  12. 5. Какой выбрать размер вентилятора
  13. 6. Сколько нужно вентиляторов
  14. 7. Как расположить вентиляторы
  15. 8. Как монтировать вентиляторы
  16. Кулеры
  17. Термопаста
  18. Из чего собрать «тихий» ПК
  19. А вот показатели датчиков при обычном использовании компьютера и при 100% загрузке процессора
  20. Бесшумные корпуса для компьютеров
  21. Вентиляторы
  22. Видеокарты
  23. Для pci аудиокарт (на заказ 3…5 дней)
  24. Зачем мне нужен компьютер?
  25. Как я победил шум
  26. Какие компоненты самые шумные?
  27. Компоновка
  28. Конструкция вентилятора
  29. Корпус
  30. Лёгкость обслуживания
  31. Личные впечатления
  32. Максимальный с wifi
  33. Материнские платы
  34. Минимальный 1
  35. Напоследок фотография моего системника и скриншоты с показателями датчиков
  36. Немного очевидных фактов
  37. Претензии к компонентам
  38. Так где же идеальный корпус?
  39. Типичные проблемы корпусов
  40. Турбулентность

Что делать?

Не хотелось бы заканчивать статью на грустной ноте, поэтому расскажу о вариантах решения проблемы:

Для себя я выбрал mATX корпус с горизонтальным расположением материнской платы.

Я так не сделал из-за лени и наличия любопытного кота.

Есть такая штука:

Гуглится по словам «алюминиевый профиль радиаторный».

Используется для охлаждения систем освещения на основе светодиодов, стоит недорого. Ширина (которую мне удалось найти) до 30 сантиметров. Толщина основания от 6 миллиметров. В некоторых случаях его можно заказать уже анодированным.

И этот радиаторный профиль можно использовать в качестве стенки корпуса.

Через термосифон:

… устанавливаем материнскую плату с процессором.

Снимаем штатную систему охлаждения с видеокарты и при помощи райзера через термосифон крепим её к тому же радиатору. Вы великолепны! На самом деле — не совсем. Меня смущает, что контакт термосифона и радиаторного профиля может оказаться недостаточным. Само собой, тут тоже надо использовать термопасту, но хватит ли этого?

В дополнение можно установить снизу несколько вентиляторов, которые будут помогать при нагрузке.

По моим прикидкам, радиаторного профиля 30 на 30см со слабым обдувом должно хватить на 300 Ватт тепловой мощности от процессора и видеокарты.

На этом всё, надеюсь, эта статья кому-нибудь поможет.

9. На что монтировать вентиляторы

Чтобы убрать вибрации, вентиляторы монтируют с помощью резиновых антивибрационных креплений.

Рис. 17. Резиновые антивибрационные крепления для вентилятора
Рис. 17. Резиновые антивибрационные крепления для вентилятора

Корпуса

В объемных корпусах (Ultra-tower и Full-tower) проще организовать правильную циркуляцию воздуха, так как в них помещается больше вентиляторов и есть куда спрятать провода. Компании be quiet! и Fractal Design специализируются на производстве корпусов со звукоизоляцией. Удачные модели встречаются у SilverStone, Thermaltake, NZXT, Corsair, Nanoxia и Bitfenix.

Рис. 1. <a href="https://www.nikktech.com/main/articles/pc-hardware/pc-cases/9336-deepcool-baronkase-liquid-cooling-case-review?showall=1" target="_blank" rel="noopener noreferrer nofollow">Результаты теста</a> (англ.) звукоизоляции корпусов при работе стоковых вентиляторов с 50 и 100% скоростью.
Рис. 1. Результаты теста (англ.) звукоизоляции корпусов при работе стоковых вентиляторов с 50 и 100% скоростью.

1. Материал шумоизоляции корпуса

Шумоизоляция корпуса состоит из слоев битума и вспененного материала, которые устраняют вибрации. Слой флиса поглощает звуковые волны. Толщина слоев от 5 до 10 мм.

Рис. 2. Шумоизоляция корпуса компании be quiet!
Рис. 2. Шумоизоляция корпуса компании be quiet!

2. Влияние окна в корпусе на шумоизоляцию

Тест корпуса на шумоизоляцию с окном без него

Судя по тесту корпуса Fractal Design Define R5 с глухой стенкой и с окном, окно не влияет на шумоизоляцию. Надо учитывать, что Fractal Design выпускает качественные корпуса. Если стекло тонкое и неплотно прилегает к корпусу, то шум возрастет.

1. Вентилятор с подшипником скольжения

Рис. 3. Устройство вентилятора с подшипником скольжения
Рис. 3. Устройство вентилятора с подшипником скольжения

Подшипник скольжения состоит из цилиндрического корпуса, в который вставлена втулка из антифрикционного материала. Внутри втулки вращается вал. Вал отделен от втулки заполненным смазкой зазором.

Рис. 4. Устройство подшипника скольжения
Рис. 4. Устройство подшипника скольжения

Небольшое расстояние между валом и втулкой и/или отсутствие смазки увеличивают трение, что затрудняет запуск вентилятора, повышает износ, энергопотребление и шум. Если зазор увеличить, вал начнет колебаться.

Рис. 5. Иллюстрация колебания вала внутри подшипника
Рис. 5. Иллюстрация колебания вала внутри подшипника

При вертикальном положении вентилятора давление вала на втулку в разных точках различается. Вал со временем деформирует отверстие втулки – оно становится овальным. Усиливаются колебания вала и увеличивается шум. Вентиляторы с подшипником скольжения лучше использовать в горизонтальном положении, чтобы давление вала на втулку было равномерным.

10. Как отрегулировать скорость вращения вентилятора

На Алиэкспресс продаются регуляторы оборотов для нескольких вентиляторов с питанием от разъема MOLEX или SATA.

Рис. 18. Регулятор оборотов для одного вентилятора
Рис. 18. Регулятор оборотов для одного вентилятора

11. Форма и количество лопастей

При увеличении количества лопастей с 6 до 12, скорость воздуха возрастает на 30% (pdf).

Рис. 21. График зависимости скорости воздуха от числа лопастей
Рис. 21. График зависимости скорости воздуха от числа лопастей

Шума при этом становится больше (рис. 22).

Рис. 22. Зависимость создаваемого звукового давления от количества лопастей <a href="https://ru.wikipedia.org/wiki/Аэродинамический_профиль" target="_blank" rel="noopener noreferrer nofollow">аэродинамического профиля</a> (<a href="https://www.sciencedirect.com/science/article/abs/pii/0022460X77905521" target="_blank" rel="noopener noreferrer nofollow">pdf</a>, англ.)
Рис. 22. Зависимость создаваемого звукового давления от количества лопастей аэродинамического профиля (pdf, англ.)

2. Вентилятор с подшипником качения

Рис. 6. Устройство вентилятора с подшипником качения
Рис. 6. Устройство вентилятора с подшипником качения

Вентиляторы с подшипниками качения (шарикоподшипниками) стабильно работают в любой ориентации и меньше изнашиваются, потому что трение качения меньше трения скольжения.

Рис. 7. Устройство подшипника качения
Рис. 7. Устройство подшипника качения

3. Вентилятор с гидродинамическим подшипником

В вентиляторах с гидродинамическим подшипником вал вращается в слое жидкости, которая удерживается внутри втулки за счет возникающей во время работы разницы давлений. Это снижает трение и шум.

Рис. 8. Подшипник скольжения (слева) и гидродинамический подшипник
Рис. 8. Подшипник скольжения (слева) и гидродинамический подшипник

4. Вентилятор с магнитным центрированием

В конструкции с магнитным центрированием вал опирается на колпачок и удерживается на месте магнитами, поэтому вес крыльчатки меньше изнашивает подшипник. Магнитное поле притягивает вал вниз, уменьшая его колебания, и позволяет устанавливать вентилятор под любым углом.

Рис. 9. Устройство вентилятора с магнитным центрированием
Рис. 9. Устройство вентилятора с магнитным центрированием
Тип подшипникаШумРесурс (час.)ПоложениеЦена
СкольженияНизкий35 000ГоризонтальноеНизкая
ГидродинамическийНизкий80 000ЛюбоеСредняя
КаченияСредний90 000ЛюбоеСредняя
Магнитное центрированиеНизкий150 000ЛюбоеВысокая

5. Какой выбрать размер вентилятора

В корпусах используются вентиляторы разных диаметров: 120, 140, 200 мм и выше. Вентиляторы большого диаметра при одинаковой скорости вращения создают бо́льший воздушный поток (CFM) в сравнении с вентиляторами меньшего диаметра. Необходимый для отвода тепловой мощности W воздушный поток Q вычисляется по следующей формуле:

При температуре 20 °C и атмосферном давлении 101.325 кПа, плотность сухого воздуха равна 1.2 кг/м³, а удельная теплоемкость – 1 кДж/кг°C. После подстановки значений формула упрощается:

6. Сколько нужно вентиляторов

Чем больше, тем лучше. С увеличением количества вентиляторов можно понижать их скорость. При этом сохраняется продуваемость и снижается шум.

Условный пример: шесть вентиляторов на низких оборотах будут создавать такой же воздушный поток, как два-три вентилятора, которые работают на максимальной скорости и при этом шумят.

Рис. 10. Корпус Aerocool Scar Midi Tower с местами для шести вентиляторов 120 мм
Рис. 10. Корпус Aerocool Scar Midi Tower с местами для шести вентиляторов 120 мм

7. Как расположить вентиляторы

От величины воздушного потока, который создают вентиляторы на входе и выходе, зависит давление в корпусе. Отрицательное давление возникает, когда выталкивается больше воздуха, чем всасывается (Рис. 11). В таком случае воздух вместе с пылью втягивается в корпус через все щели.

Рис. 11. Иллюстрация направления движения воздушных потоков при негативном давлении внутри корпуса
Рис. 11. Иллюстрация направления движения воздушных потоков при негативном давлении внутри корпуса

Нейтральное давление получается, когда на входе и выходе вентиляторы создают одинаковый воздушный поток (Рис. 12).

Рис. 12. Иллюстрация направления движения воздушных потоков при нейтральном давлении внутри корпуса
Рис. 12. Иллюстрация направления движения воздушных потоков при нейтральном давлении внутри корпуса

При положительном давлении всасывается больше воздуха, чем выталкивается (Рис. 13). В корпус попадает меньше пыли, так как воздух втягивается через отверстия с пылевым фильтром.

Рис. 13. Иллюстрация направления движения воздушных потоков при положительном давлении внутри корпуса
Рис. 13. Иллюстрация направления движения воздушных потоков при положительном давлении внутри корпуса

Выбирайте между нейтральным либо положительным давлением и периодически чистите внутренность корпуса и щели, через которые вентиляторы закачивают воздух. Вентиляторы на лицевой панели корпуса должны работать на вдув, а остальные – на выдув. Периодически очищайте пылевой фильтр блока питания, если корпус стоит на полу, а блок питания расположен внизу корпуса.

Рис. 14. Правильная циркуляция воздуха внутри корпуса ПК напоминает «крест»: справа налево (от лицевой панели к задней) и снизу наверх.
Рис. 14. Правильная циркуляция воздуха внутри корпуса ПК напоминает «крест»: справа налево (от лицевой панели к задней) и снизу наверх.

В старых корпусах фильтров нет. Они продаются на Алиэкспресс (Рис. 15).

Рис. 15. Пылевые фильтры для вентилятора
Рис. 15. Пылевые фильтры для вентилятора

8. Как монтировать вентиляторы

Если внутри корпуса много препятствий для потоков воздуха, нужно увеличить создаваемое давление, чтобы воздух смог их преодолеть. Для этого вентиляторы монтируют последовательно (Рис. 16). Если кабели убраны и препятствий для воздуха мало, применяется параллельный монтаж.

Расположение вентиляторовДавление воздухаПоток воздуха
ПараллельноеНе меняетсяУвеличивается
ПоследовательноеУвеличиваетсяНе меняется
Рис. 16. График зависимости давления воздуха от скорости воздушного потока при последовательном и параллельном расположении вентиляторов
Рис. 16. График зависимости давления воздуха от скорости воздушного потока при последовательном и параллельном расположении вентиляторов

Кулеры

Небольшой радиатор в боксовых кулерах (от англ. cooler – охладитель) не справится с теплоотводом при серьезной нагрузке, поэтому вентилятор будет работать на максимальной скорости и шуметь. Система охлаждения процессора подбирается под TDP (расчетную тепловую мощность): величину, показывающую, на отвод какой тепловой мощности он рассчитан.

Виды систем охлаждения:

Воздушная система состоит из радиатора и вентилятора. К водяной системе добавляется качающая воду помпа (Рис. 23).

Рис. 23. Принцип работы водяной системы охлаждения
Рис. 23. Принцип работы водяной системы охлаждения

Воздушные кулеры не уступают водяным системам при охлаждении ЦП (Рис. 24).

Рис. 24. <a href="https://www.gamersnexus.net/hwreviews/3571-arctic-liquid-freezer-ii-cooler-review-benchmark" target="_blank" rel="noopener noreferrer nofollow">Результаты теста</a> (англ.) водяных и воздушных систем охлаждения ЦП
Рис. 24. Результаты теста (англ.) водяных и воздушных систем охлаждения ЦП

Топовый кулер на воздушном охлаждении (Cooler Master Wraith Ripper, Noctua NH-D15) стоит как «водянка» из среднего ценового диапазона с посредственными вентиляторами.

Рис. 25. Кулер Noctua NH-D15
Рис. 25. Кулер Noctua NH-D15
Система охлажденияИсточники шумаУходСрок службы
ВоздушнаяВентиляторОчистка радиатора от пылиЗависит от вентилятора
ВодянаяВентилятор и помпаЗамена жидкости, очистка радиатора и шланговЗависит от вентилятора и помпы

У видеокарт TDP выше, чем у центрального процессора, поэтому на них ставят водяную систему охлаждения в ущерб тишине. Значения TDP для сравнения: процессоры Intel Core i9 Comet Lake (125 Вт), AMD Ryzen Threadripper 2 (250 Вт) и видеокарты RTX 3080 (320 Вт) и RTX 3090 (350 Вт).

Термопаста

Термопаста – вещество с высокой теплопроводностью (выражается в Вт/(м*К)), которое заполняет воздушные зазоры между охлаждаемой поверхностью и радиатором для эффективной передачи тепла.

Рис. 27. Термопаста заполняет воздушные зазоры
Рис. 27. Термопаста заполняет воздушные зазоры

Вентилятор ЦП подключен к разъему 4-pin и его скорость автоматически меняется в зависимости от температуры процессора. Термоинтерфейс с низкой теплопроводностью (< 8 Вт/(м*K)) хуже передает тепло от процессора к радиатору, поэтому вентиляторы работают на повышенных скоростях.

Рис. 28. <a href="https://youtu.be/Z8LNlD5KQbo?t=255" target="_blank" rel="noopener noreferrer nofollow">Результаты теста</a> (англ.) термопаст в AIDA64 при 100% нагрузке процессора в течение одного часа. Топ 3: <b>1. Thermal Grizzly Kryonaut</b>, <b>2. Noctua NT-H2</b>, <b>3. Thermaltake TG-8</b>
Рис. 28. Результаты теста (англ.) термопаст в AIDA64 при 100% нагрузке процессора в течение одного часа. Топ 3: 1. Thermal Grizzly Kryonaut, 2. Noctua NT-H2, 3. Thermaltake TG-8

Из чего собрать «тихий» ПК

Корпус:

Система охлаждения ЦП:

Количество вентиляторов:

Диаметр вентиляторов:

Подшипник вентилятора:

  • магнитное центрирование;
  • гидродинамический подшипник.

Термопаста:

  • коэффициент теплопроводности > 8 Вт/(м*К).

Что еще сделать:

  • кабель-менеджмент;
  • регулярно чистить пылевые фильтры;
  • провести «тонкую» настройку вентилятора с помощью регулятора оборотов.

***

Мы определили источник шума и как его убрать. Узнали, какие бывают подшипники, где расположить и как смонтировать вентиляторы. Научились рассчитывать воздушный поток и создавать нужное давление в корпусе. Этого вполне достаточно, чтобы собрать малошумный компьютер с эффективной системой охлаждения.

А вот показатели датчиков при обычном использовании компьютера и при 100% загрузке процессора

Офисные задачи, серфинг

image

100% загрузка процессора

image

Это мой первый пост. Надеюсь он не совсем ужасен и будет кому-то интересен. Спасибо за внимание.

UPDATE1: в комментариях предложили написать цены используемого мной оборудования, исправляюсь. У меня:радиатор CR-95C Pearl Black IcePipe 95W Fanless CPU Cooler (4000 руб) пересылка из АнглииБП Nofan P-400A Silent 400W Fanless PSU (5500) пересылка из Англиикорпус Antec mini P180 (давно не продается, лет 5 назад я его покупал за примерно 7000, если я ничего не путаю). Корпус без БПпроцессор — Intel i7-3770

UPDATE2: еще в комментариях предложили составить таблицу бесшумных или тихих компонентов, я один, скорее всего, по времени не потяну ее, но если кто-то согласится помочь. то, думаю, все получится, так что буду рад, если кто-то откликнется

Бесшумные корпуса для компьютеров

НИКС — Компьютерный Супермаркет г. Москва

Звездный бульвар, дом 19к1Москва, Россия

7 (495) 974-3333order@nix.ruВконтактеYoutube

Вентиляторы

Тут все просто — пассивное воздушное или водяное охлаждение. Я выбрал первый вариант.

Для процессора — это эффективно отводящие тепло радиаторы от таких фирм, как Scythe, Nofan, Noctua и других, их много. Одна из характеристик радиатора — это рассеиваемая мощность процессора, так что легко можно подобрать подходящий под ваш процессор вариант. Часто минусом таких радиаторов является их большой размер, из-за чего могут возникать проблемы с перекрытием ближнего слота pci-e. Вторая особенность — как правило процессоры от Intel холоднее процессоров от AMD, что несколько ограничивает выбор. Разгон тоже сильно влияет на тепловыделение, увы.
Такие радиаторы обычно выглядят как-то так:
image
Или так (у меня как раз такой):
image

Видеокарта — для моих задач вполне хватает встроенного видео, так что проблема с видеокартой у меня оказалось самой простой. Если же вам нужна мощная бесшумная видеокарта, то вариантов здесь два — умеренно мощная видеокарта с пассивным охлаждением, например ASUS HD7750-DCSL-1GD5, или карта помощнее с водоблоком.

Блок питания. Раньше проблему шума блока питания я решал просто — отключал вентилятор. 2 сломавшихся БП с интервалом в полтора года каждый вынудили пересмотреть подход к проблеме. В итоге я купил БП с пассивным охлаждением Nofan P-400A Silent 400W Fanless Power Supply Unit. Выглядит он вот так:
image
Еще есть полностью пассивный вариант Chieftec GPS-500C 500W ATX. Кроме того, существует много вариантов БП с термодатчиками, которые автоматически меняют скорость вращения вентилятора, с выносной панелью с ручным регулированием оборотов вентилятора и варианты с полупассивным охлаждением, когда вентилятор начинает работать только при определенном уровне нагрузки.

Если варианты с пассивным БП вас не устраивают (скорее всего по финансовым соображениям из-за их дороговизны), снизить шум можно заменой вентилятора на менее шумный. Очень тихие вентиляторы производят все те же фирмы — Scythe, Noctua, Acousti, Nanoxia.

Недостатками таких вентиляторов могут быть более высокая цена и слабый поток. Кроме того, вентилятор можно подключить не к БП, а к материнской плате, что позволит управлять его оборотами. Единственная проблема — это, скорее всего, потеря гарантии.

Видеокарты

Давным давно, когда приняли стандарт ATX и придумали ставшую классической компоновку материнской платы, никто не думал, что в слот AGP (позднее PCI-E) будут ставить самый горячий компонент системы. А потом видеокарты стали наращивать энергопотребление и под процессором расположилась миниатюрная печка.

С этим ничего не поделать, но есть замечание к системе охлаждения. Самый распространенный вариант охлаждения сейчас выглядит так:

Как я собирал бесшумный компьютер / Хабр
Такая система охлаждения по сравнению с турбинкой:Как я собирал бесшумный компьютер / Хабр
более тихая, обеспечивает более низкую температуру видеокарты и нравится всем обзорщикам. Но есть одно но — она не удаляет горячий воздух из корпуса. Таким образом к шуму от вентиляторов видеокарты прибавляется шум вентиляторов корпуса (на лето мне приходилось ставить дополнительный мощный нагнетающий вентилятор, иначе корпус задыхался).

Для pci аудиокарт (на заказ 3…5 дней)

Бесшумный компьютер. Mini-ITX-7, No Windows, I3-10100T 4 Core (3.0 GHz), 16 Gb, 960 Gb, DVD

Работа с документами, интернетом
Фильмы, музыка, фото
Объем жесткого диска
Онлайн игры (вКонтакте и др.), 2-D игры
Требовательные 3-D игры

Зачем мне нужен компьютер?

То есть мой компьютер должен рассеивать ~500Ватт тепловой мощности (100 процессор, 300 видеокарта, 100 — всё остальное).

Также должен быть SSD под ОСь с программами и место под HDD с файлохранилищем. Для NAS я еще не созрел.

Как я победил шум

Чтобы устранить все перечисленные источники шума в своем компьютере, мною было сделано следующее:

Какие компоненты самые шумные?

Если в случае с кулером и блоком питания можно найти тихие варианты, то с видеокартой идеального решения нет. Но об этом чуть позже.

Теперь приведу в пример типичную компоновку корпуса и расскажу, что в ней не так:

Компоновка

Я уже высказался по поводу печки под процессором и хочу привести пару примеров, где эта проблема решена.

1) Корпус с материнской платой, повернутой на 90 градусов:

Конвекция и вентиляторы работают вместе. В тестах на эффективность охлаждения этот корпус показывал очень хорошие результаты.

2) Горизонтальное расположение материнской платы

Тут всё понятно — горячий воздух поднимается от процессора и видеокарты наверх. Комплектующие друг друга не греют.

3) Корпуса — перевертыши

Материнская плата повернута на 180 градусов, то есть видеокарта расположена над процессором и больше его не греет.

4) Можно использовать райзер для подключения видеокарты

Так видеокарту можно разместить в дальней от процессора части корпуса и компоненты будут меньше греть друг друга.

Конструкция вентилятора

Двигатель вентилятора состоит из ротора и статора (Рис. 3). Статор – неподвижная часть, в которую с помощью вала вставляется ротор. Подшипник фиксирует вал с заданной жесткостью. К ротору прикреплены лопатки, которые при вращении втягивают и выталкивают воздух. Разберемся в устройстве подшипников, так как шум возникает чаще всего из-за них.

Корпус

Раньше я думал, что хороший корпус для бесшумного компьютера — это такой корпус, который совсем не выпускает шум изнутри системного блока. Впоследствии оказалось, что это не совсем так. Корпус должен исключать вибрации и учитывать небольшие нюансы:1)

расположение БП, которое не мешает естественной циркуляции воздуха. Как правило, это внизу у задней панели с прямым подключением блока питания. Еще бывают варианты расположения БП сверху в районе где у обычных корпусов располагаются приводы с непрямым подключением провода питания (такие корпуса есть, например, у Nanoxia);2) наличие отверстий в верхней части корпуса при пассивном воздушном охлаждении и отверстий для шлангов при водяном;3) более прочная конструкция, исключающая возникновение любых вибраций;4) часто в таких корпусах жесткие диски крепятся в специальные виброгасящие корзины.

Такие корпусы есть в линейке у Antec, Nanoxia, Fractal Design, Cooler Master, Silver Stone и у многих других производителей

Лично у меня старый добрый Antec Mini P180 форм-фактора mATX. Корпус устраивает абсолютно всем, но не без косяков — нижнее расположение БП не позволяет без удлинителя дотянуться до разъема дополнительного питания на материнской плате, а корзины для жестких дисков плохо дружат с установкой в них сайлентбоксов.

Выглядит он вот так:
image

Высокочастотный писк/шум компонентов

Этот неприятный писк, как правило, характерен для дешевых комплектующих и БП периферии. Мои познания не позволяют ничего сказать ни о причинах, ни о способах борьбы с такими негативными моментами. На форумах активно обсуждаются различные варианты колхоза с заливкой чего-то там специальным лаком, заменой деталей и прочего. Я же могу дать только один совет — как правило пищат и трещат компоненты изделий из нижней ценовой категории.

Лёгкость обслуживания

В данном контексте всё просто — хочется иметь возможность пропылесосить пылевые фильтры не разбирая корпус.

Жидкостная система охлаждения сделает компьютер значительно дороже и потребует дополнительной возни, иначе в охлаждающей жидкости заведется новая жизнь, непонятная склизкая масса забьет микроканалы и (или) жидкость протечет/испарится.

Личные впечатления

Я считаю, что бесшумный компьютер — это здорово, когда определяешь, что компьютер включен не по шуму от него, а по горящим лампочкам. Не все, конечно, так безоблачно. Мне компьютер нужен для стандартных офисных программ, тяжелые приложения с постоянной 100% загрузкой процессора я использую очень редко и краткосрочно.

Другая проблема для многих — это слабое видео. Кому-то оно нужно. Мне же и третьим героям хватает встроенного видео. Немаловажный аспект в вопросе бесшумного компьютера — это вопрос цены необходимых компонентов. Если говорить округленно, то подходящий корпус стоит 5-8 тысяч рублей, радиатор на процессор — 1,5-4 т.р., сайлентбоксы для HDD — 1-3 т.р.

Максимальный с wifi

Бесшумный компьютер. Mini-ITX-2, No Windows, I3-10100T 4 Core (3.0 GHz), 16 Gb, 960 Gb, DVD, Wi-Fi

Работа с документами, интернетом
Фильмы, музыка, фото
Объем жесткого диска
Онлайн игры (вКонтакте и др.), 2-D игры
Требовательные 3-D игры

Материнские платы

Как самый большой компонент системы.

Полноразмерный ATX сейчас редко когда нужен. Обычно в слоты PCI воткнуты только видеокарта и, в редких случаях, звуковая карта. Всё остальное и так встроено в материнскую плату.

Но это легко решается, так как есть форматы mATX и mini-ITX. Но в большинстве корпусов miniITX сложно обеспечить хорошее охлаждение и, как правило, нет слота 3.5″ под HDD, так что мой выбор — mATX.

Минимальный 1

Бесшумный компьютер. Mini-ITX-4, No Windows, I3-10100T 4 Core (3.0 GHz), 8 Gb, 240 Gb

Работа с документами, интернетом
Фильмы, музыка, фото
Объем жесткого диска
Онлайн игры (вКонтакте и др.), 2-D игры
Требовательные 3-D игры

Напоследок фотография моего системника и скриншоты с показателями датчиков

image

Тут все просто — с корпуса сняты ненужные задний и верхний вентиляторы с регуляторами оборотов, радиатор — Nofan CR-95C Pearl Black IcePipe 95W Fanless CPU Cooler, TDP процессора — 77 W, верхняя корзина снята за ненадобностью, в средней находятся 2 2,5 дюймовых HDD в сайлентбоксах, в нижней корзине все провода, видеокарта встроенная, один слот используется звуковой картой, все.

Немного очевидных фактов

Источниками шума в компьютере являются:

1) вентиляторы блока питания, радиатора процессора, видеокарты как минимум. Как максимум же могут стоять еще дополнительно вентиляторы на вдув и выдув воздуха, на HDD и прочие устройства;

2) жесткие диски;

3) вибрация элементов корпуса из-за механической работы вентиляторов и жестких дисков;

4) параноики могут добавить в этот список высокочастотный писк различных компонентов — блоков питания компьютера и периферии, материнской платы и прочее.

Претензии к компонентам

Да, они есть. Классическая компоновка не предполагает компактности размещения, но к этому уже все привыкли.

Так где же идеальный корпус?

Его нет. Но кое-что приблизилось к моим представлениям об идеальной компоновке

Не являюсь поклонником Apple, но Mac Pro мне нравится. Есть только нагнетающие вентиляторы и в потоке воздуха от них установлены радиаторы компонентов.

Кто-то краудфандингом собирает деньги на клон этого корпуса, но самую главную фишку — проточные радиаторы,- они реализовать не смогут.

Как я собирал бесшумный компьютер / Хабр
В итоге получится как с фальшивыми ёлочными игрушками — выглядят как настоящие, но радости (охлаждения) не приносят.

Типичные проблемы корпусов

Теперь я хочу разобрать все пункты по порядку и указать на типичные проблемы типичных корпусов.

Турбулентность

Как я собирал бесшумный компьютер / Хабр

Рассчитаем

для системы кулер-радиатор.

Re = (скорость потока)*(характерный размер)/(кинематическая вязкость)

Согласно исследованию, производительность кулера колеблется в пределах 20-60 кубических метров в час, или 0,005 — 0,015 куб.м./сек. Примем 0,01 куб.м./сек как среднее по больнице кулерам.Диаметр среднего кулера пример 7 см = 0,07 м.

Тогда скорость потока = (производительность)/(площадь) = 0,01/(пи * 0,07*0,07/4) = 2,6 метра в секунду

Характерный размер у нас уже есть — это диаметр.

Тогда Re = (2,6)*(0,07)/(16/1000000) = 11000

Согласно той же Вики, и другим источникам, при таком числе Re течение воздуха является турбулентным.

При турбулентном течении в воздухе возникают вихри. Вихрь — самостоятельное образование, срываясь с лопастей вентилятора, вихри образуют скачки давления воздуха. То же самое происходит при ударе вихревого образования о твердую поверхность. Скачки давления от многочисленных вихрей и создают тот самый шумовой звук, который исходит от работающего кулера.

Можно ли сделать течение ламинарным, то есть безвихревым, чтобы не было шума? Даже при снижении скорости потока воздуха в четыре раза течение останется турбулентным, вихревым (число Re станет равно 2500). Однако есть интуитивное предположение, что снижение скорости потока воздуха снизит издаваемый шум. Об этом чуть ниже.

Шум механики кулера.Все звуковые эффекты от механики кулера напрямую зависят от силы, которую создает ток, протекающий через обмотки. Природа этих звуковых эффектов разнообразна и сложна, и тут рассуждать на пальцах смысле не имеет. Однако очевидно, что при снижении тока, протекающего через обмотки, и при снижении частоты вращения кулера звуковые эффекты будут уменьшаться.

Действительно, зачем рассуждать на пальцах, если есть вот такое исследование. Оно посвящено вентиляторам, но кулер — это и есть вентилятор, все выводы будут справедливы. В нем фигуирует только скорость потока, но из теории вентиляторов следует, что расход воздуха, а следовательно, и скорость потока, прямо пропорциональны частоте вращения (rpm). Снижаем в два раза частоту вращения — в два раза меньше скорость потока.

Итак, все шумы вентилятора пропорциональны частоте вращения. Процитируем исследование

Известно, что турбулентный шум является источником квадрупольного типа, и его звуковая мощность пропорциональна ~u8, а вихревой шум является источником дипольного типа, и его звуковая мощность ~u6, где u – окружная скорость. При уменьшении частоты вращения также снижается и шум вращения, который имеет дипольную (шум нагрузки) и монопольную (шум вытеснения) природу, и их звуковая мощность пропорциональна ~u6 и ~u4 соответственно.


Итак, мощность турбулентного шума пропорциональная восьмой (!) степени частоты вращения. То есть уровень звукового давления шума пропорционален четвертой степени частоты (уровень = корень из мощности = корень из 8 степени = 4 степень).

Ухты!

Вот шкала громкости (цифры в дБ)

Порог слышимости 0Тиканье наручных часов 10Шепот 20Звук настенных часов 30Приглушенный разговор 40Тихая улица 50Обычный разговор 60Шумная улица 70

Примем по этой шкале уровень громкости системного блока 65 дБ — среднее между обычным разговором и шумной улицей.Снижение частоты вращения вентиляторов в два раза снизит шум от турбулентных потоков воздуха в 2^4 = 16 раз, или на 24 дБ, то есть уровень громкости станет равен равным приглушенному разговору. Хороший эффект!

Термодинамический расчетМы выше писали — снизим скорость в два раза. Почему в два? Почему не в двадцать? Или вообще выключить вентиляторы, никакого шума не будет? Ведь требуется какой-то поток воздуха для охлаждения, тут мы его снижаем — а что произойдет, например, с процессором?

Давайте решим задачу, которая в начале поста.

Итак, температура процессора = 35 градусов, радиатор процессора штатно обдувается кулером, скорость потока не меняется.
Процессор увеличил тепловыделение в два раз. Какая будет температура процессора при неизменном потоке воздуха?
Рассмотрим процесс обдува. Представим, что система «кулер-радиатор-процессор» — это черный ящик, которы отдает тепло потоку воздуха. Количество тепла пропорционально разности температур процессора и набегающего воздуха на входе, то есть (температура процессора — температура входящего в кулер воздуха).
Температура входящего воздуха = тмпературе внутри системного блока. Примем ее равной 30 градусам.
Итого разность температур процессора и набегающего воздуха = 35 — 30 = 5 градусов. Если процессор в два раза увеличит тепловыделение, разность температур тоже вырастет в два раза, то есть станет равной 5*2 = 10 градусов.
А температура процессора будет равна температура воздуха разность = 30 10 = 40 градусов (вместо 70, которые сразу приходят в голову)

А что произойдет с температурой процессора, если уменьшить скорость потока охлаждения в два раза?Согласно Справочник по физике Кухлинг К количество тепла, уносимого с поверхности «воздух-твердая стенка» пропорционально разности температур и корню из скорости потока воздуха.

Итоговая формула:

Тпроцессора = Твоздуха (Тпроцессора начальная — Твоздуха)*корень((скорость вращения начальная / скорость вращения итоговая))

Выполним пару реальных расчетов, из практики.

Тпроцессора начальная = 42 градуса
Твоздуха = 20 градусов (системный блок открыт)
Скорость вращения снижена в 2 раза (с 2000 до 1000 rpm)
Тпроцессора =20 (42-20)*1,4 = 51 градус
Жеще условия
Тпроцессора начальная = 60 градусов (старый горячий Athlon)
Твоздуха = 20 градусов (системный блок открыт)
Скорость вращения снижена в 2.5 раза (с 2000 до 800 rpm)
Тпроцессора =20 (42-20)*1,4 = 76 градусов

Мы видим, что даже на горячем процессоре (разность температур = 40 градусов) и снижении скорости вращения в 2,5 раза (=уменьшение шума на 31 дБ) температура процессора остается в допустимых пределах с хорошим запасом.

Вот на коленке результаты теста на процессоре Core i5 серии 3, видно, что даже на стресс-тесте температура при снижении частоты вращения в 2,5 раза растет на несколько градусов.

Итого: теоретически снизить скорост вращения вентилятров в 2-2,5 раза безопасно для электроники, которая ими охлаждается

Как снизить частоту вращения вентиляторов? Снизить напряжение питания. А как зависит скорость вращения от напряжения питания? Примерно линейно, см. табличку выше.

Начинаем модернизировать системный блокПрежде всего, вентиляторов у нас минимум два — один в блоке питания и один на процессоре. Может быть еще один на видеокарте, на старых моделях — еще и на материнской плате.Что будем делать:1) отключаем все вентиляторы от питания 12В2) соединяем их вместе и подключаем к питанию 5В3) тестируем

1) Итак, достаем и разбираем БП.
Как я собирал бесшумный компьютер / Хабр
Вентилятор просто аккуратно откусываем от платы (там может быть разъем, а может и не быть, неважно). Припаиваем длинные проводочки к проводам, идущим от кулера, выводим их наружу
Как я собирал бесшумный компьютер / Хабр
Откусываем откулера процессора все провода, делаем ту же операцию. У кулера процессора может быть три или четыре провода, соотв. земля, 12В, датчик вращения и (оционально) управление скоростью. Нас интересует только 12В, землю и все остальное можно оставить прямо в разъеме
Как я собирал бесшумный компьютер / Хабр
Но можно и откусить землю и 12В, это лучше (это Pentium4)
Как я собирал бесшумный компьютер / Хабр
Если на видеокарте есть кулер — то же самое: откусываем и удлиняем провода
Как я собирал бесшумный компьютер / Хабр
Еще видеокарта, это GeForce 8600 gts
Как я собирал бесшумный компьютер / Хабр

Внимание! 1) убедитесь в надежности паяных соединений, подергайте их на прочность2) ни в коем случае не используйте для изоляции изоленту. Только термоусадочный кембрик, изоленту — только для временной механической фиксации проводов3) исходите из принципа, что все что может замкнуть — обязательно замкнет, все что может отвалиться — отвалитсяМы можем снизить скорость обдува радиаторов, но если у вас вдруг какой-то узел на ходу останется без обдува (отвалится пайка например), вы узнаете об этом, когда этот узел выйдет из строя. Делайте надежно.

2) Соединяем все провода от кулеров, соблюдая полярность. В итоге получится два провода — плюс и минус всей системы охлаждения компьютера (всех кулеров, соединенных вместе).
Далее возникнет задача — как подключить к разъему питания. Можно выпаять и использовать штырьки от старых CD/DVD приводов или неисправных винчестеров (это лучше, надежнее — не выдернешь)
Как я собирал бесшумный компьютер / Хабр
или штырьки от материнских плат. Но такое подключение потом нужно обязательно зафиксировать механически, хотя бы на первое время изолентой, такие штырьки держатся гораздо слабее
Как я собирал бесшумный компьютер / Хабр
3) проверяем все тщательно, дергаем за провода — чтоб вдруг не вылетело ничего. Готовимся ко включению

Первое включениеБудьте готовы быстро осмотреть все вентиляторы сразу после включения.Включаем!Быстро осматриваем и проверяем вентиляторы, — они все должны крутиться. Если вдруг какой-то стоИт — сразу выключаем (эту ситуацию рассмотрим ниже)

Если все вентиляторы крутятся — ок. Вентилятор БП можно проверить, приложив бумажку к БП — должно слабенько дуть.ОкУ вас может начать ругаться BIOS — мол, не крутится вентилятор БП или низкие обороты или не регулируется. Зайдите в БИОС, поставьте CPU FAN в игнорОкВсе!

И наслаждайтесь тишиной!

Насколько тихо работает компьютер после такой переделки?Совсем тихо. Слышно только винчестер.

Есть ли риски такой переделки?Нет. Вы всегда можете переключить питание всех вентиляторов обратно на 12В, получите обратно ровно то же самое, что и было

Что делать в ситуации, когда один из вентиляторов не крутится при включении?Возможно, ему не хватает вращающего момента для старта (хотя такая ситуация ни разу не наблюдалась). В этом случае сделайте питание всех вентиляторов не 5в, а 7В.

Каким образом?Мы для подачи питания 5В подключали вентиляторов к 5В, а землю вентиляторов к земле. Подключите вентиляторов к 12В, а землю — к 5В. В этом случае на вентиляторах будет 12-5 = 7В. Появится небольшой шум, тем не менее это гораздо тише, чем было.

Сколько компьютеров были переделаны подобным образом?Автор этих строк с 2008 года лично модернизировал несколько десятков самых разных типов: от Пентиум4 до Core i5. Вся линейка семейств Intel между указанными выше процессорами: Core2Duo, Celeron G***, Pentium G*** и пр. Машин на процессорах АМД меньше, но все же — от старых с сокетом 939 до новых.

Были ли геймерские или разгнанные оверклоковские компьютеры?Нет, и тут стоит подумать, нужны ли такие модернизации для указанных компьютеров.

Наблюдались ли проблемы?Связанные с модернизцией (перегрев, выход из строя охлаждаемых узлов) — нет

Сколько по времени занимает такая модернизация?Примерно два-три часа

Как ведут себя модернизированные таким образом компьютеры летом?Как обычно. Сбоев не зафиксировано

Какие-либо доп. меры обслуживания?Пожалуй, есть смысл чаще выдувать пыль и чистить компьютер. Кстати, пыли в таком компьютере скапливается меньше (видимо, за счет меньшего объема проходимого воздуха)

А в чем ноу-хау?Ни в чем. Описанный выше способ давно известен электронщикам и активно применяется. Авто публикации просто попытался подвести под такую модернизацию теоретическую базу и показал примеры практической реализации.

Можно ли сделать что-то подобное на ноутбуках?Ни в коем случае! Электроника ноутбука работает в очень тяжелых тепловых условиях, и система охлаждения отличается от десктопа.

UPD2 И в заключение. Все же прежде чем что-либо делать с системой охлаждения, сделайте анализ. 1) засеките любой прогаммой температуру материнской платы (можно считать ее равной температуре внутри системного блока) и температуру процессора2) запустите стресс-тест для процессора (есть во многих программах)3) засеките температуру процессора через 10-15 минут после запуска стресс-теста4) выполните расчет температуры процессора при уменьшении частоты вращения (по формуле в статье)

Если конечный результат приемлем, можете переделывать. Если же вы получаете темературу, близкую к предельной для CPU, воздержитесь от указанных переделок.(Но эта ситуация относится, скорее, к пункту об игровых/оверклокерских машинах)

Оцените статью
OverComp.ru